BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28369976)

  • 1. Quantum chemical calculations of tryptophan → heme electron and excitation energy transfer rates in myoglobin.
    Suess CJ; Hirst JD; Besley NA
    J Comput Chem; 2017 Jun; 38(17):1495-1502. PubMed ID: 28369976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.
    Consani C; Auböck G; van Mourik F; Chergui M
    Science; 2013 Mar; 339(6127):1586-9. PubMed ID: 23393092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of disordered hemes on energy transfer rates between tryptophans and heme in myoglobin.
    Gryczynski Z; Fronticelli C; Tenenholz T; Bucci E
    Biophys J; 1993 Nov; 65(5):1951-8. PubMed ID: 8298024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan-to-heme electron transfer in ferrous myoglobins.
    Monni R; Al Haddad A; van Mourik F; Auböck G; Chergui M
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5602-6. PubMed ID: 25902517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast dynamics of resonance energy transfer in myoglobin: probing local conformation fluctuations.
    Stevens JA; Link JJ; Kao YT; Zang C; Wang L; Zhong D
    J Phys Chem B; 2010 Jan; 114(3):1498-505. PubMed ID: 20047308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry. FRETting over the spectroscopic ruler.
    Winkler JR
    Science; 2013 Mar; 339(6127):1530-1. PubMed ID: 23539587
    [No Abstract]   [Full Text] [Related]  

  • 7. Time resolved emissions in the picosecond range of single tryptophan recombinant myoglobins reveal the presence of long range heme protein interactions.
    Gryczynski Z; Bucci E
    Biophys Chem; 1998 Sep; 74(3):187-96. PubMed ID: 9779582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast dynamics of nonequilibrium resonance energy transfer and probing globular protein flexibility of myoglobin.
    Stevens JA; Link JJ; Zang C; Wang L; Zhong D
    J Phys Chem A; 2012 Mar; 116(11):2610-9. PubMed ID: 21863851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study on the solvent dependent heme cooling following ligand photolysis in carbonmonoxy myoglobin.
    Zhang Y; Fujisaki H; Straub JE
    J Phys Chem B; 2007 Mar; 111(12):3243-50. PubMed ID: 17388441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational Energy Transfer from Heme through Atomic Contacts in Proteins.
    Yamashita S; Mizuno M; Tran DP; Dokainish H; Kitao A; Mizutani Y
    J Phys Chem B; 2018 Jun; 122(22):5877-5884. PubMed ID: 29746131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of axial coordination by protein engineering in myoglobin. Bisimidazole ligation in the His64-->Val/Val68-->His double mutant.
    Dou Y; Admiraal SJ; Ikeda-Saito M; Krzywda S; Wilkinson AJ; Li T; Olson JS; Prince RC; Pickering IJ; George GN
    J Biol Chem; 1995 Jul; 270(27):15993-6001. PubMed ID: 7608158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical evaluation of protein control over heme ligation: CO/O2 discrimination in myoglobin.
    De Angelis F; Jarzecki AA; Car R; Spiro TG
    J Phys Chem B; 2005 Feb; 109(7):3065-70. PubMed ID: 16851321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monooxygenation of an aromatic ring by F43W/H64D/V68I myoglobin mutant and hydrogen peroxide. Myoglobin mutants as a model for P450 hydroxylation chemistry.
    Pfister TD; Ohki T; Ueno T; Hara I; Adachi S; Makino Y; Ueyama N; Lu Y; Watanabe Y
    J Biol Chem; 2005 Apr; 280(13):12858-66. PubMed ID: 15664991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of tryptophan-ANS fluorescence energy transfer in apomyoglobin by site-directed mutagenesis.
    Sirangelo I; Malmo C; Casillo M; Irace G
    Photochem Photobiol; 2002 Oct; 76(4):381-4. PubMed ID: 12405143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenching of tryptophan phosphorescence in Escherichia coli alkaline phosphatase by long-range transfer mechanisms to external agents in the rapid-diffusion limit.
    Mersol JV; Steel DG; Gafni A
    Biochemistry; 1991 Jan; 30(3):668-75. PubMed ID: 1846302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative modification of tryptophan 43 in the heme vicinity of the F43W/H64L myoglobin mutant.
    Hara I; Ueno T; Ozaki Si ; Itoh S; Lee K; Ueyama N; Watanabe Y
    J Biol Chem; 2001 Sep; 276(39):36067-70. PubMed ID: 11481319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond UV studies of the electronic relaxation processes in Cytochrome c.
    Bräm O; Consani C; Cannizzo A; Chergui M
    J Phys Chem B; 2011 Nov; 115(46):13723-30. PubMed ID: 22004429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy.
    Sato A; Mizutani Y
    Biochemistry; 2005 Nov; 44(45):14709-14. PubMed ID: 16274218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplays of electron and nuclear motions along CO dissociation trajectory in myoglobin revealed by ultrafast X-rays and quantum dynamics calculations.
    Shelby ML; Wildman A; Hayes D; Mara MW; Lestrange PJ; Cammarata M; Balducci L; Artamonov M; Lemke HT; Zhu D; Seideman T; Hoffman BM; Li X; Chen LX
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steric effects of isoleucine 107 on heme reorientation reaction in human myoglobin.
    Ishikawa H; Takahashi S; Ishimori K; Morishima I
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1095-100. PubMed ID: 15485667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.