These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28370093)

  • 1. The angular position of a refuge affects escape responses in staghorn sculpin Leptocottus armatus.
    Shi X; Møller JS; Højgaard J; Johansen JL; Steffensen JF; Liu D; Domenici P
    J Fish Biol; 2017 Jun; 90(6):2434-2442. PubMed ID: 28370093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escaping from multiple visual threats: modulation of escape responses in Pacific staghorn sculpin (Leptocottus armatus).
    Kimura H; Pfalzgraff T; Levet M; Kawabata Y; Steffensen JF; Johansen JL; Domenici P
    J Exp Biol; 2022 May; 225(9):. PubMed ID: 35403681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start.
    Wöhl S; Schuster S
    J Exp Biol; 2007 Jan; 210(Pt 2):311-24. PubMed ID: 17210967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable gene transcription underlies phenotypic convergence of hypoxia tolerance in sculpins.
    Mandic M; Ramon ML; Gerstein AC; Gracey AY; Richards JG
    BMC Evol Biol; 2018 Nov; 18(1):163. PubMed ID: 30390629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Severe hypoxia impairs lateralization in a marine teleost fish.
    Lucon-Xiccato T; Nati JJ; Blasco FR; Johansen JL; Steffensen JF; Domenici P
    J Exp Biol; 2014 Dec; 217(Pt 23):4115-8. PubMed ID: 25359933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A walking behavior generates functional overland movements in the tidepool sculpin, Oligocottus maculosus.
    Bressman NR; Gibb AC; Farina SC
    Zoology (Jena); 2018 Dec; 131():20-28. PubMed ID: 30502824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenging zebrafish escape responses by increasing water viscosity.
    Danos N; Lauder GV
    J Exp Biol; 2012 Jun; 215(Pt 11):1854-62. PubMed ID: 22573764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics of aquatic and terrestrial escape responses in mudskippers.
    Swanson BO; Gibb AC
    J Exp Biol; 2004 Nov; 207(Pt 23):4037-44. PubMed ID: 15498949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement.
    Chadwell BA; Standen EM; Lauder GV; Ashley-Ross MA
    J Exp Biol; 2012 Aug; 215(Pt 16):2869-80. PubMed ID: 22837461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypophysectomy and ovine prolactin on the epithelial mucus-secreting cells of the Pacific staghorn sculpin, Leptocottus armatus (Teleostei: Cottidae).
    Marshall WS
    Can J Zool; 1976 Oct; 54(10):1604-9. PubMed ID: 974929
    [No Abstract]   [Full Text] [Related]  

  • 11. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni.
    Diamond KM; Schoenfuss HL; Walker JA; Blob RW
    J Exp Biol; 2016 Oct; 219(Pt 19):3100-3105. PubMed ID: 27471278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of Escape Responses: Prior Predator Experience Enhances Escape Performance in a Coral Reef Fish.
    Ramasamy RA; Allan BJ; McCormick MI
    PLoS One; 2015; 10(8):e0132790. PubMed ID: 26244861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The osmorespiratory compromise in sculpins: impaired gas exchange is associated with freshwater tolerance.
    Henriksson P; Mandic M; Richards JG
    Physiol Biochem Zool; 2008; 81(3):310-9. PubMed ID: 18419557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinematics of directional control in the fast start of zebrafish larvae.
    Nair A; Azatian G; McHenry MJ
    J Exp Biol; 2015 Dec; 218(Pt 24):3996-4004. PubMed ID: 26519511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escape manoeuvres in the spiny dogfish (Squalus acanthias).
    Domenici P; Standen EM; Levine RP
    J Exp Biol; 2004 Jun; 207(Pt 13):2339-49. PubMed ID: 15159438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A miniaturized threshold-triggered acceleration data-logger for recording burst movements of aquatic animals.
    Nishiumi N; Matsuo A; Kawabe R; Payne N; Huveneers C; Watanabe YY; Kawabata Y
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29444848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing hypotheses concerning the phenotypic plasticity of escape performance in fish of the family Cottidae.
    Temple G; i
    J Exp Biol; 1998; 201(3):317-31. PubMed ID: 9427667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in fast-start performance within a population of polyphenic bluegill (Lepomis macrochirus).
    Gerry SP; Robbins A; Ellerby DJ
    Physiol Biochem Zool; 2012; 85(6):694-703. PubMed ID: 23099466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling of the fast-start escape response of juvenile bluegills.
    Gerry SP; Belden J; Bisaccia M; George K; Mahoney T; Ellerby DJ
    Zoology (Jena); 2016 Dec; 119(6):518-525. PubMed ID: 27263833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of steady swimming on fish escape performance.
    Anwar SB; Cathcart K; Darakananda K; Gaing AN; Shin SY; Vronay X; Wright DN; Ellerby DJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):425-33. PubMed ID: 27161016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.