These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 28370405)

  • 101. Nanopatterned Scaffolds for Neural Tissue Engineering and Regenerative Medicine.
    Park S; Kim D; Park S; Kim S; Lee D; Kim W; Kim J
    Adv Exp Med Biol; 2018; 1078():421-443. PubMed ID: 30357636
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Advanced Bioinks for 3D Printing: A Materials Science Perspective.
    Chimene D; Lennox KK; Kaunas RR; Gaharwar AK
    Ann Biomed Eng; 2016 Jun; 44(6):2090-102. PubMed ID: 27184494
    [TBL] [Abstract][Full Text] [Related]  

  • 103. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid.
    Xie Z; Gao M; Lobo AO; Webster TJ
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32751797
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
    Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF
    Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Unconventional Tissue Engineering Materials in Disguise.
    Nguyen MA; Camci-Unal G
    Trends Biotechnol; 2020 Feb; 38(2):178-190. PubMed ID: 31590907
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
    Caprio ND; Burdick JA
    Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Skin Bioprinting: Impending Reality or Fantasy?
    Ng WL; Wang S; Yeong WY; Naing MW
    Trends Biotechnol; 2016 Sep; 34(9):689-699. PubMed ID: 27167724
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Concise Review: Organ Engineering: Design, Technology, and Integration.
    Kaushik G; Leijten J; Khademhosseini A
    Stem Cells; 2017 Jan; 35(1):51-60. PubMed ID: 27641724
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Microvalve-based bioprinting - process, bio-inks and applications.
    Ng WL; Lee JM; Yeong WY; Win Naing M
    Biomater Sci; 2017 Mar; 5(4):632-647. PubMed ID: 28198902
    [TBL] [Abstract][Full Text] [Related]  

  • 110. The Importance of Interfaces in Multi-Material Biofabricated Tissue Structures.
    Viola M; Piluso S; Groll J; Vermonden T; Malda J; Castilho M
    Adv Healthc Mater; 2021 Nov; 10(21):e2101021. PubMed ID: 34510824
    [TBL] [Abstract][Full Text] [Related]  

  • 111. 3D Printing: Advancement in Biogenerative Engineering to Combat Shortage of Organs and Bioapplicable Materials.
    Parihar A; Pandita V; Kumar A; Parihar DS; Puranik N; Bajpai T; Khan R
    Regen Eng Transl Med; 2022; 8(2):173-199. PubMed ID: 34230892
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Current advances and future perspectives in extrusion-based bioprinting.
    Ozbolat IT; Hospodiuk M
    Biomaterials; 2016 Jan; 76():321-43. PubMed ID: 26561931
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
    Akbari M; Tamayol A; Bagherifard S; Serex L; Mostafalu P; Faramarzi N; Mohammadi MH; Khademhosseini A
    Adv Healthc Mater; 2016 Apr; 5(7):751-66. PubMed ID: 26924450
    [TBL] [Abstract][Full Text] [Related]  

  • 114. 25th anniversary article: Engineering hydrogels for biofabrication.
    Malda J; Visser J; Melchels FP; Jüngst T; Hennink WE; Dhert WJ; Groll J; Hutmacher DW
    Adv Mater; 2013 Sep; 25(36):5011-28. PubMed ID: 24038336
    [TBL] [Abstract][Full Text] [Related]  

  • 115. [3D bioprinting in regenerative medicine and tissue engineering].
    Fricain JC; De Olivera H; Devillard R; Kalisky J; Remy M; Kériquel V; Le Nihounen D; Grémare A; Guduric V; Plaud A; L'Heureux N; Amédée J; Catros S
    Med Sci (Paris); 2017 Jan; 33(1):52-59. PubMed ID: 28120756
    [TBL] [Abstract][Full Text] [Related]  

  • 116. In situ three-dimensional printing for reparative and regenerative therapy.
    Ashammakhi N; Ahadian S; Pountos I; Hu SK; Tellisi N; Bandaru P; Ostrovidov S; Dokmeci MR; Khademhosseini A
    Biomed Microdevices; 2019 Apr; 21(2):42. PubMed ID: 30955134
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Green electrospinning for biomaterials and biofabrication.
    Mosher CZ; Brudnicki PAP; Gong Z; Childs HR; Lee SW; Antrobus RM; Fang EC; Schiros TN; Lu HH
    Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34102612
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Biofabrication: reappraising the definition of an evolving field.
    Groll J; Boland T; Blunk T; Burdick JA; Cho DW; Dalton PD; Derby B; Forgacs G; Li Q; Mironov VA; Moroni L; Nakamura M; Shu W; Takeuchi S; Vozzi G; Woodfield TB; Xu T; Yoo JJ; Malda J
    Biofabrication; 2016 Jan; 8(1):013001. PubMed ID: 26744832
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Guidelines for establishing a 3-D printing biofabrication laboratory.
    Sanicola HW; Stewart CE; Mueller M; Ahmadi F; Wang D; Powell SK; Sarkar K; Cutbush K; Woodruff MA; Brafman DA
    Biotechnol Adv; 2020 Dec; 45():107652. PubMed ID: 33122013
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Emerging tissue engineering strategies for the corneal regeneration.
    Tafti MF; Aghamollaei H; Moghaddam MM; Jadidi K; Alio JL; Faghihi S
    J Tissue Eng Regen Med; 2022 Aug; 16(8):683-706. PubMed ID: 35585479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.