These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28370821)
1. Antibacterial activity of polihexanide formulations in a co-culture of HaCaT keratinocytes and Staphylococcus aureus and at different pH levels. Wiegand C; Eberlein T; Andriessen A Wound Repair Regen; 2017 May; 25(3):423-431. PubMed ID: 28370821 [TBL] [Abstract][Full Text] [Related]
2. HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide. Wiegand C; Abel M; Ruth P; Hipler UC Wound Repair Regen; 2009; 17(5):730-8. PubMed ID: 19769725 [TBL] [Abstract][Full Text] [Related]
3. Bactericidal effects of polyhexamethylene biguanide against intracellular Staphylococcus aureus EMRSA-15 and USA 300. Kamaruzzaman NF; Firdessa R; Good L J Antimicrob Chemother; 2016 May; 71(5):1252-9. PubMed ID: 26825118 [TBL] [Abstract][Full Text] [Related]
4. Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing. Napavichayanun S; Amornsudthiwat P; Pienpinijtham P; Aramwit P Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():95-104. PubMed ID: 26117743 [TBL] [Abstract][Full Text] [Related]
5. Uptake of PHMB in a bacterial nanocellulose-based wound dressing: A feasible clinical procedure. de Mattos IB; Holzer JCJ; Tuca AC; Groeber-Becker F; Funk M; Popp D; Mautner S; Birngruber T; Kamolz LP Burns; 2019 Jun; 45(4):898-904. PubMed ID: 30509765 [TBL] [Abstract][Full Text] [Related]
6. Albumin reduces the antibacterial activity of polyhexanide-biguanide-based antiseptics against Staphylococcus aureus and MRSA. Kapalschinski N; Seipp HM; Onderdonk AB; Goertz O; Daigeler A; Lahmer A; Lehnhardt M; Hirsch T Burns; 2013 Sep; 39(6):1221-5. PubMed ID: 23664226 [TBL] [Abstract][Full Text] [Related]
7. Comparing two polymeric biguanides: chemical distinction, antiseptic efficacy and cytotoxicity of polyaminopropyl biguanide and polyhexamethylene biguanide. Rembe JD; Fromm-Dornieden C; Schäfer N; Böhm JK; Stuermer EK J Med Microbiol; 2016 Aug; 65(8):867-876. PubMed ID: 27302218 [TBL] [Abstract][Full Text] [Related]
8. pH influence on antibacterial efficacy of common antiseptic substances. Wiegand C; Abel M; Ruth P; Elsner P; Hipler UC Skin Pharmacol Physiol; 2015; 28(3):147-58. PubMed ID: 25614073 [TBL] [Abstract][Full Text] [Related]
9. Bacterial growth kinetics under a novel flexible methacrylate dressing serving as a drug delivery vehicle for antiseptics. Forstner C; Leitgeb J; Schuster R; Dosch V; Kramer A; Cutting KF; Leaper DJ; Assadian O Int J Mol Sci; 2013 May; 14(5):10582-90. PubMed ID: 23698780 [TBL] [Abstract][Full Text] [Related]
10. Development of a PHMB hydrogel-modified wound scaffold dressing with antibacterial activity. Jin J; Chen ZL; Xiang Y; Tang T; Zhou H; Hong XD; Fan H; Zhang XD; Luo PF; Ma B; Wang GY; Xia ZF Wound Repair Regen; 2020 Jul; 28(4):480-492. PubMed ID: 32304258 [TBL] [Abstract][Full Text] [Related]
11. Effect of polyhexamethylene biguanide functionalized silver nanoparticles on the growth of Staphylococcus aureus. Yi J; Zhang Y; Lin W; Niu B; Chen Q FEMS Microbiol Lett; 2019 Feb; 366(4):. PubMed ID: 30879081 [TBL] [Abstract][Full Text] [Related]
13. Influence of human acute wound fluid on the antibacterial efficacy of different antiseptic polyurethane foam dressings: An in vitro analysis. Rembe JD; Fromm-Dornieden C; Böhm J; Stuermer EK Wound Repair Regen; 2018 Jan; 26(1):27-35. PubMed ID: 29363857 [TBL] [Abstract][Full Text] [Related]
14. Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus. Kapalschinski N; Seipp HM; Kückelhaus M; Harati KK; Kolbenschlag JJ; Daigeler A; Jacobsen F; Lehnhardt M; Hirsch T J Wound Care; 2017 Apr; 26(4):184-187. PubMed ID: 28379100 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial activity of clinically used antiseptics and wound irrigating agents in combination with wound dressings. Hirsch T; Limoochi-Deli S; Lahmer A; Jacobsen F; Goertz O; Steinau HU; Seipp HM; Steinstraesser L Plast Reconstr Surg; 2011 Apr; 127(4):1539-1545. PubMed ID: 21187812 [TBL] [Abstract][Full Text] [Related]
16. Effect of Polyhexamethylene Biguanide in Combination with Undecylenamidopropyl Betaine or PslG on Biofilm Clearance. Zheng Y; Wang D; Ma LZ Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466613 [TBL] [Abstract][Full Text] [Related]
17. Cytocompatibility testing of cyclodextrin-functionalized antimicrobial textiles-a comprehensive approach. Reddersen K; Finger S; Zieger M; Wiegand C; Buschmann HJ; Elsner P; Hipler UC J Mater Sci Mater Med; 2016 Dec; 27(12):190. PubMed ID: 27844305 [TBL] [Abstract][Full Text] [Related]
18. In vitro efficacy of a polyhexamethylene biguanide-impregnated gauze dressing against bacteria found in veterinary patients. Lee WR; Tobias KM; Bemis DA; Rohrbach BW Vet Surg; 2004; 33(4):404-11. PubMed ID: 15230846 [TBL] [Abstract][Full Text] [Related]
19. Polyvinyl Alcohol/Chitosan/Polyhexamethylene Biguanide Phase Separation System: A Potential Topical Antibacterial Formulation with Enhanced Antimicrobial Effect. Ni Y; Qian Z; Yin Y; Yuan W; Wu F; Jin T Molecules; 2020 Mar; 25(6):. PubMed ID: 32183411 [TBL] [Abstract][Full Text] [Related]
20. Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. Eberlein T; Haemmerle G; Signer M; Gruber Moesenbacher U; Traber J; Mittlboeck M; Abel M; Strohal R J Wound Care; 2012 Jan; 21(1):12, 14-6, 18-20. PubMed ID: 22240928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]