These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 28370963)
1. Fabrication of self-setting β-tricalcium phosphate granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963 [TBL] [Abstract][Full Text] [Related]
2. Effects of acidic calcium phosphate concentration on setting reaction and tissue response to β-tricalcium phosphate granular cement. Fukuda N; Ishikawa K; Akita K; Kamada K; Kurio N; Mori Y; Miyamoto Y J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):22-29. PubMed ID: 30884116 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution. Eddy ; Tsuchiya A; Tsuru K; Ishikawa K J Biomater Appl; 2018 Nov; 33(5):630-636. PubMed ID: 30376757 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO Ishikawa K; Putri TS; Tsuchiya A; Tanaka K; Tsuru K J Biomed Mater Res A; 2018 Mar; 106(3):797-804. PubMed ID: 29105999 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats. Shariff KA; Tsuru K; Ishikawa K Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1411-1419. PubMed ID: 28415432 [TBL] [Abstract][Full Text] [Related]
6. Effect of citric acid on setting reaction and tissue response to β-TCP granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K Biomed Mater; 2017 Feb; 12(1):015027. PubMed ID: 28233758 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of chelate-setting α-tricalcium phosphate cement using sodium citrate and sodium alginate as mixing solution and its in vivo osteoconductivity. Konishi T; Lim PN; Honda M; Nagaya M; Nagashima H; Thian ES; Aizawa M J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2361-2370. PubMed ID: 29149487 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. Ishikawa K; Arifta TI; Hayashi K; Tsuru K J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):269-277. PubMed ID: 29577584 [TBL] [Abstract][Full Text] [Related]
10. Bone regeneration using β-tricalcium phosphate (β-TCP) block with interconnected pores made by setting reaction of β-TCP granules. Putri TS; Hayashi K; Ishikawa K J Biomed Mater Res A; 2020 Mar; 108(3):625-632. PubMed ID: 31742920 [TBL] [Abstract][Full Text] [Related]
11. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle. Paul K; Lee BY; Abueva C; Kim B; Choi HJ; Bae SH; Lee BT J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):260-271. PubMed ID: 26478465 [TBL] [Abstract][Full Text] [Related]
12. Injectable thermosensitive alginate/β-tricalcium phosphate/aspirin hydrogels for bone augmentation. Fang X; Lei L; Jiang T; Chen Y; Kang Y J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1739-1751. PubMed ID: 28888067 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic effect of tricalcium phosphate substituted by magnesium associated with Genderm® membrane in rat calvarial defect model. Costa NM; Yassuda DH; Sader MS; Fernandes GV; Soares GD; Granjeiro JM Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():63-71. PubMed ID: 26838825 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of interconnected porous calcite by bridging calcite granules with dicalcium phosphate dihydrate and their histological evaluation. Ishikawa K; Koga N; Tsuru K; Takahashi I J Biomed Mater Res A; 2016 Mar; 104(3):652-658. PubMed ID: 26509820 [TBL] [Abstract][Full Text] [Related]
15. 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects. Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Kim BH; Choi SH J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1254-1263. PubMed ID: 30300967 [TBL] [Abstract][Full Text] [Related]
16. Vertical bone augmentation with granulated brushite cement set in glycolic acid. Mariño FT; Torres J; Tresguerres I; Jerez LB; Cabarcos EL J Biomed Mater Res A; 2007 Apr; 81(1):93-102. PubMed ID: 17109427 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
19. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656 [TBL] [Abstract][Full Text] [Related]
20. Injectable biphasic calcium phosphate cements as a potential bone substitute. Sariibrahimoglu K; Wolke JG; Leeuwenburgh SC; Yubao L; Jansen JA J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):415-22. PubMed ID: 24106108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]