BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28371026)

  • 21. A comparative ultrastructural and physiological study on melanophores of wild-type and periodic albino mutants of Xenopus laevis.
    Seldenrijk R; Huijsman KG; Heussen AM; van de Veerdonk FC
    Cell Tissue Res; 1982; 222(1):1-9. PubMed ID: 6800656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.
    Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW
    J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation.
    de Rijk EP; Jenks BG; Wendelaar Bonga SE
    Gen Comp Endocrinol; 1990 Jul; 79(1):74-82. PubMed ID: 2162308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2010 Oct; 342(1):53-66. PubMed ID: 20859642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium requirement for alpha-MSH action on melanophores: studies with forskolin.
    de Graan PN; van de Kamp AJ; Hup DR; Gispen WH; van de Veerdonk FC
    J Recept Res; 1984; 4(1-6):521-36. PubMed ID: 6098671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo.
    Aspengren S; Hedberg D; Wallin M
    Pigment Cell Res; 2006 Apr; 19(2):136-45. PubMed ID: 16524429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis.
    Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG
    Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melatonin, melatonin receptors and melanophores: a moving story.
    Sugden D; Davidson K; Hough KA; Teh MT
    Pigment Cell Res; 2004 Oct; 17(5):454-60. PubMed ID: 15357831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation.
    Berghs CA; Tanaka S; Van Strien FJ; Kurabuchi S; Roubos EW
    J Histochem Cytochem; 1997 Dec; 45(12):1673-82. PubMed ID: 9389771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis.
    Kolk SM; Berghs CA; Vaudry H; Verhage M; Roubos EW
    Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation.
    Bertolesi GE; McFarlane S
    Pigment Cell Melanoma Res; 2018 May; 31(3):354-373. PubMed ID: 29239123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis.
    Martens GJ; Weterings KA; van Zoest ID; Jenks BG
    Biochem Biophys Res Commun; 1987 Mar; 143(2):678-84. PubMed ID: 3566743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Xenopus tadpole melanophores are controlled by dark and light and melatonin without influence of time of day.
    Binkley S; Mosher K; Rubin F; White B
    J Pineal Res; 1988; 5(1):87-97. PubMed ID: 3367263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process.
    Verburg-van Kemenade BM; Jenks BG; Smits RJ
    Neuroendocrinology; 1987 Oct; 46(4):289-96. PubMed ID: 2823159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone.
    van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG
    Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new in vitro melanophore bioassay for MSH using tail-fins of Xenopus tadpoles.
    de Graan PN; Molenaar R; van de Veerdonk FC
    Mol Cell Endocrinol; 1983 Oct; 32(2-3):271-84. PubMed ID: 6642076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface.
    Jenks BG; Ouwens DT; Coolen MW; Roubos EW; Martens GJ
    J Neuroendocrinol; 2002 Nov; 14(11):843-5. PubMed ID: 12421336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasticity of melanotrope cell regulations in Xenopus laevis.
    Roubos EW; Van Wijk DC; Kozicz T; Scheenen WJ; Jenks BG
    Eur J Neurosci; 2010 Dec; 32(12):2082-6. PubMed ID: 21143662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus.
    Kang DY; Kim HC
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Jan; 179():44-56. PubMed ID: 25242625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological color change in the bullfrog, Rana catesbeiana.
    Camargo CR; Visconti MA; Castrucci AM
    J Exp Zool; 1999 Feb; 283(2):160-9. PubMed ID: 9919686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.