BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28371090)

  • 1. A Biomimetic Phosphatidylcholine-Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer-Based Sensors.
    Li H; Dauphin-Ducharme P; Arroyo-Currás N; Tran CH; Vieira PA; Li S; Shin C; Somerson J; Kippin TE; Plaxco KW
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7492-7495. PubMed ID: 28371090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Reporter Drift Correction To Enhance the Performance of Electrochemical Aptamer-Based Sensors in Whole Blood.
    Li H; Arroyo-Currás N; Kang D; Ricci F; Plaxco KW
    J Am Chem Soc; 2016 Dec; 138(49):15809-15812. PubMed ID: 27960346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring End-Group Effect of Alkanethiol Self-Assembled Monolayers on Electrochemical Aptamer-Based Sensors in Biological Fluids.
    Li S; Wang Y; Zhang Z; Wang Y; Li H; Xia F
    Anal Chem; 2021 Apr; 93(14):5849-5855. PubMed ID: 33787229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids.
    Shaver A; Curtis SD; Arroyo-Currás N
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11214-11223. PubMed ID: 32040915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating Hydrophobic Moieties into Self-Assembled Monolayers to Enable Electrochemical Aptamer-Based Sensors Deployed Directly in a Complex Matrix.
    Zhang Z; Wang Y; Mei Z; Wang Y; Li H; Li S; Xia F
    ACS Sens; 2022 Sep; 7(9):2615-2624. PubMed ID: 35998663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsecond-Resolved Molecular Measurements in the Living Body Using Chronoamperometrically Interrogated Aptamer-Based Sensors.
    Arroyo-Currás N; Dauphin-Ducharme P; Ortega G; Ploense KL; Kippin TE; Plaxco KW
    ACS Sens; 2018 Feb; 3(2):360-366. PubMed ID: 29124939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time,
    Downs AM; Plaxco KW
    ACS Sens; 2022 Oct; 7(10):2823-2832. PubMed ID: 36205360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrogation of Electrochemical Aptamer-Based Sensors via Peak-to-Peak Separation in Cyclic Voltammetry Improves the Temporal Stability and Batch-to-Batch Variability in Biological Fluids.
    Pellitero MA; Curtis SD; Arroyo-Currás N
    ACS Sens; 2021 Mar; 6(3):1199-1207. PubMed ID: 33599479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclease Hydrolysis Does Not Drive the Rapid Signaling Decay of DNA Aptamer-Based Electrochemical Sensors in Biological Fluids.
    Shaver A; Kundu N; Young BE; Vieira PA; Sczepanski JT; Arroyo-Currás N
    Langmuir; 2021 May; 37(17):5213-5221. PubMed ID: 33876937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of surface modification strategies to create glassy carbon-supported, aptamer-based sensors for continuous molecular monitoring.
    Pellitero MA; Arroyo-Currás N
    Anal Bioanal Chem; 2022 Jul; 414(18):5627-5641. PubMed ID: 35352164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Aptamer-Based Sensors for Rapid Point-of-Use Monitoring of the Mycotoxin Ochratoxin A Directly in a Food Stream.
    Somerson J; Plaxco KW
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29662036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer Sensors.
    Marrazza G
    Biosensors (Basel); 2017 Jan; 7(1):. PubMed ID: 28054983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Aptamer-Based Biosensors for Measurements in Undiluted Human Saliva.
    Nguyen MD; Nguyen KN; Malo S; Banerjee I; Wu D; Du-Thumm L; Dauphin-Ducharme P
    ACS Sens; 2023 Dec; 8(12):4625-4635. PubMed ID: 37992319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
    White RJ; Rowe AA; Plaxco KW
    Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer-Based Sensors.
    Leung KK; Gerson J; Emmons N; Heemstra JM; Kippin TE; Plaxco KW
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202316678. PubMed ID: 38500260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Surface Area Electrodes Generated via Electrochemical Roughening Improve the Signaling of Electrochemical Aptamer-Based Biosensors.
    Arroyo-Currás N; Scida K; Ploense KL; Kippin TE; Plaxco KW
    Anal Chem; 2017 Nov; 89(22):12185-12191. PubMed ID: 29076341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey of oligoethylene glycol-based self-assembled monolayers on electrochemical aptamer-based sensor in biological fluids.
    Son K; Uzawa T; Ito Y; Kippin T; Plaxco KW; Fujie T
    Biochem Biophys Res Commun; 2023 Aug; 668():1-7. PubMed ID: 37230045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Employing an Intercalated Redox Reporter in Electrochemical Aptamer-Based Biosensors to Enable Calibration-Free Molecular Measurements in Undiluted Serum.
    Zhu M; Li S; Li H; Li H; Xia F
    Anal Chem; 2020 Sep; 92(18):12437-12441. PubMed ID: 32786211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum.
    Lai RY; Plaxco KW; Heeger AJ
    Anal Chem; 2007 Jan; 79(1):229-33. PubMed ID: 17194144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR; Wagan S; White RJ
    Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.