These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28371090)

  • 41. Superwetting and aptamer functionalized shrink-induced high surface area electrochemical sensors.
    Hauke A; Kumar LSS; Kim MY; Pegan J; Khine M; Li H; Plaxco KW; Heikenfeld J
    Biosens Bioelectron; 2017 Aug; 94():438-442. PubMed ID: 28334628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum.
    Arya SK; Zhurauski P; Jolly P; Batistuti MR; Mulato M; Estrela P
    Biosens Bioelectron; 2018 Apr; 102():106-112. PubMed ID: 29127898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improvement of Electrochemical Response of Cocaine Sensors Based on DNA Aptamer by Heat Treatment.
    Arimoto S; Shimono K; Yasukawa T; Mizutani F; Yoshioka T
    Anal Sci; 2016; 32(4):469-72. PubMed ID: 27063722
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual-Frequency, Ratiometric Approaches to EAB Sensor Interrogation Support the Calibration-Free Measurement of Specific Molecules In Vivo.
    Verrinder E; Gerson J; Leung K; Kippin TE; Plaxco KW
    ACS Sens; 2024 Jun; 9(6):3205-3211. PubMed ID: 38775190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-Time Tunable Dynamic Range for Calibration-Free Biomolecular Measurements with a Temperature-Modulated Electrochemical Aptamer-Based Sensor in an Unprocessed Actual Sample.
    Chen ZM; Mou Q; Wu SH; Xie Y; Salminen K; Sun JJ
    Anal Chem; 2022 Jan; 94(2):1397-1405. PubMed ID: 34962777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical nanomaterial-based nucleic acid aptasensors.
    Palchetti I; Mascini M
    Anal Bioanal Chem; 2012 Apr; 402(10):3103-14. PubMed ID: 22349328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Status of biomolecular recognition using electrochemical techniques.
    Sadik OA; Aluoch AO; Zhou A
    Biosens Bioelectron; 2009 May; 24(9):2749-65. PubMed ID: 19054662
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a.
    Elshafey R; Siaj M; Zourob M
    Biosens Bioelectron; 2015 Jun; 68():295-302. PubMed ID: 25594161
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical, Electrochemiluminescence, and Photoelectrochemical Aptamer-Based Nanostructured Sensors for Biomarker Analysis.
    Ravalli A; Voccia D; Palchetti I; Marrazza G
    Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27490578
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood.
    Zhao S; Yang W; Lai RY
    Biosens Bioelectron; 2011 Jan; 26(5):2442-7. PubMed ID: 21081271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y; Lai RY; Plaxco KW
    Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High frequency, calibration-free molecular measurements
    Li H; Li S; Dai J; Li C; Zhu M; Li H; Lou X; Xia F; Plaxco KW
    Chem Sci; 2019 Nov; 10(47):10843-10848. PubMed ID: 34040713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A tight squeeze: geometric effects on the performance of three-electrode electrochemical-aptamer based sensors in constrained,
    Leung KK; Gerson J; Emmons N; Roehrich B; Verrinder E; Fetter LC; Kippin TE; Plaxco KW
    Analyst; 2023 Mar; 148(7):1562-1569. PubMed ID: 36891771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application.
    Wang Q; Liu W; Xing Y; Yang X; Wang K; Jiang R; Wang P; Zhao Q
    Anal Chem; 2014 Jul; 86(13):6572-9. PubMed ID: 24914856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time measurement of small molecules directly in awake, ambulatory animals.
    Arroyo-Currás N; Somerson J; Vieira PA; Ploense KL; Kippin TE; Plaxco KW
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):645-650. PubMed ID: 28069939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum.
    Jiang B; Li F; Yang C; Xie J; Xiang Y; Yuan R
    Anal Chem; 2015 Mar; 87(5):3094-8. PubMed ID: 25666563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction and application of an electrochemical biosensor based on an endotoxin aptamer.
    Ying G; Wang M; Yi Y; Chen J; Mei J; Zhang Y; Chen S
    Biotechnol Appl Biochem; 2018 May; 65(3):323-327. PubMed ID: 28887814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine.
    Hamidi-Asl E; Dardenne F; Blust R; De Wael K
    Sensors (Basel); 2015 Mar; 15(4):7605-18. PubMed ID: 25825978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.