BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28371135)

  • 1. Climate and geochemistry as drivers of eucalypt diversification in Australia.
    Bui EN; Thornhill AH; González-Orozco CE; Knerr N; Miller JT
    Geobiology; 2017 May; 15(3):427-440. PubMed ID: 28371135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?
    Lawes MJ; Murphy BP; Midgley JJ; Russell-Smith J
    Oecologia; 2011 May; 166(1):229-39. PubMed ID: 21063889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroecology of Australian Tall Eucalypt Forests: Baseline Data from a Continental-Scale Permanent Plot Network.
    Wood SW; Prior LD; Stephens HC; Bowman DM
    PLoS One; 2015; 10(9):e0137811. PubMed ID: 26368919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiversity effects and rates of spread of nonnative eucalypt woodlands in central California.
    Fork S; Woolfolk A; Akhavan A; Van Dyke E; Murphy S; Candiloro B; Newberry T; Schreibman S; Salisbury J; Wasson K
    Ecol Appl; 2015 Dec; 25(8):2306-19. PubMed ID: 26910957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts.
    McKinnon GE; Jordan GJ; Vaillancourt RE; Steane DA; Potts BM
    Philos Trans R Soc Lond B Biol Sci; 2004 Feb; 359(1442):275-84; discussion 284. PubMed ID: 15101583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ITS sequence data resolve higher level relationships among the eucalypts.
    Steane DA; McKinnon GE; Vaillancourt RE; Potts BM
    Mol Phylogenet Evol; 1999 Jul; 12(2):215-23. PubMed ID: 10381324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships of intra-annual stem growth with climate indicate distinct growth niches for two co-occurring temperate eucalypts.
    Hinko-Najera N; Najera Umaña JC; Smith MG; Löw M; Griebel A; Bennett LT
    Sci Total Environ; 2019 Nov; 690():991-1004. PubMed ID: 31302562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept.
    Pate JS; Verboom WH
    Ann Bot; 2009 Mar; 103(5):673-85. PubMed ID: 19141601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eucalypts face increasing climate stress.
    Butt N; Pollock LJ; McAlpine CA
    Ecol Evol; 2013 Dec; 3(15):5011-22. PubMed ID: 24455132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast genome analysis of Australian eucalypts--Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).
    Bayly MJ; Rigault P; Spokevicius A; Ladiges PY; Ades PK; Anderson C; Bossinger G; Merchant A; Udovicic F; Woodrow IE; Tibbits J
    Mol Phylogenet Evol; 2013 Dec; 69(3):704-16. PubMed ID: 23876290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomics shows lignotuber state is taxonomically informative in closely related eucalypts.
    Gosper CR; Hopley T; Byrne M; Hopper SD; Prober SM; Yates CJ
    Mol Phylogenet Evol; 2019 Jun; 135():236-248. PubMed ID: 30914394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature.
    Prior LD; Bowman DM
    Glob Chang Biol; 2014 Sep; 20(9):2793-9. PubMed ID: 24469908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread correlations between climatic niche evolution and species diversification in birds.
    Cooney CR; Seddon N; Tobias JA
    J Anim Ecol; 2016 Jul; 85(4):869-78. PubMed ID: 27064436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon.
    Steane DA; Potts BM; McLean EH; Collins L; Holland BR; Prober SM; Stock WD; Vaillancourt RE; Byrne M
    Genome Biol Evol; 2017 Feb; 9(2):253-265. PubMed ID: 28391293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in taxonomic and functional diversity of plants in a chronosequence of Eucalyptus grandis plantations.
    Pairo PE; Rodriguez EE; Bellocq MI; Aceñolaza PG
    Sci Rep; 2021 May; 11(1):10768. PubMed ID: 34031446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constancy in Functional Space across a Species Richness Anomaly.
    Swenson NG; Weiser MD; Mao L; Normand S; Rodríguez MÁ; Lin L; Cao M; Svenning JC
    Am Nat; 2016 Apr; 187(4):E83-92. PubMed ID: 27028083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae).
    Schuster TM; Setaro SD; Tibbits JFG; Batty EL; Fowler RM; McLay TGB; Wilcox S; Ades PK; Bayly MJ
    PLoS One; 2018; 13(4):e0195034. PubMed ID: 29668710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin.
    Spokevicius AV; Tibbits J; Rigault P; Nolin MA; Müller C; Merchant A
    BMC Genomics; 2017 Apr; 18(1):284. PubMed ID: 28388878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental effects on germination phenology of co-occurring eucalypts: implications for regeneration under climate change.
    Rawal DS; Kasel S; Keatley MR; Nitschke CR
    Int J Biometeorol; 2015 Sep; 59(9):1237-52. PubMed ID: 25409871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landscape drivers of genomic diversity and divergence in woodland Eucalyptus.
    Murray KD; Janes JK; Jones A; Bothwell HM; Andrew RL; Borevitz JO
    Mol Ecol; 2019 Dec; 28(24):5232-5247. PubMed ID: 31647597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.