These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28371324)

  • 41. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P; Ali SM; Shenoy KT
    J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane.
    Xie Y; Kong Y; Soh AK; Gao H
    J Chem Phys; 2007 Dec; 127(22):225101. PubMed ID: 18081421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the Origin of Water Flow through Carbon Nanotubes.
    Su J; Yang K
    Chemphyschem; 2015 Nov; 16(16):3488-92. PubMed ID: 26346506
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced water transport through a carbon nanotube controlled by the lateral pressure.
    Lv F; Fang C; Su J
    Nanotechnology; 2019 Jun; 30(24):245707. PubMed ID: 30836337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electric fields can control the transport of water in carbon nanotubes.
    Ritos K; Borg MK; Mottram NJ; Reese JM
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The chiral magnetic nanomotors.
    Morozov KI; Leshansky AM
    Nanoscale; 2014; 6(3):1580-8. PubMed ID: 24336860
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating the atomic behavior of carbon nanotubes as nanopumps.
    Shahryari M; Nazari-Golshan A; Nourazar SS; Abedi M
    Sci Rep; 2023 Oct; 13(1):18068. PubMed ID: 37872394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dipole interaction of the Quincke rotating particles.
    Dolinsky Y; Elperin T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026608. PubMed ID: 22463350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tailoring viscoelastic response of carbon nanotubes cellular structure using electric field.
    Misra A; Kumar P
    Nanoscale; 2014 Nov; 6(22):13668-77. PubMed ID: 25277155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electric field triggered release of gas from a quasi-one-dimensional hydrate in the carbon nanotube.
    Li J; Lu H; Zhou X
    Nanoscale; 2020 Jun; 12(24):12801-12808. PubMed ID: 32432277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SU-E-I-79: Correction of Dark Current and Image Lag in Multi-Source Carbon Nanotube Imaging Systems.
    Frederick C; Lalush D; Chang S
    Med Phys; 2012 Jun; 39(6Part5):3643. PubMed ID: 28517641
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Giant pumping of single-file water molecules in a carbon nanotube.
    Wang Y; Zhao YJ; Huang JP
    J Phys Chem B; 2011 Nov; 115(45):13275-9. PubMed ID: 21977917
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detailed atomistic simulation of the nano-sorption and nano-diffusivity of water, tyrosol, vanillic acid, and p-coumaric acid in single wall carbon nanotubes.
    Anastassiou A; Karahaliou EK; Alexiadis O; Mavrantzas VG
    J Chem Phys; 2013 Oct; 139(16):164711. PubMed ID: 24182068
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative studies on field-induced stretching behavior of single-walled and multiwalled carbon nanotube clusters.
    Tie W; Bhattacharyya SS; Park HR; Lee JH; Lee SW; Lee TH; Lee YH; Lee SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012508. PubMed ID: 25122325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.
    Su J; Guo H
    J Chem Phys; 2011 Jun; 134(24):244513. PubMed ID: 21721649
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bond order effects in electromechanical actuation of armchair single-walled carbon nanotubes.
    Mirfakhrai T; Krishna-Prasad R; Nojeh A; Madden JD
    J Chem Phys; 2010 Feb; 132(7):074703. PubMed ID: 20170240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Linear nanomotor based on electromigration of a nanoparticle encapsulated in a carbon nanotube.
    Kang JW; Kim KS; Kwon OK; Hwang HJ
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1573-6. PubMed ID: 21456239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.