BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28371333)

  • 1. Behavior of prostate cancer cells in a nanohydroxyapatite/collagen bone scaffold.
    Cruz-Neves S; Ribeiro N; Graça I; Jerónimo C; Sousa SR; Monteiro FJ
    J Biomed Mater Res A; 2017 Jul; 105(7):2035-2046. PubMed ID: 28371333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Analysis of Secreted Protein, Acidic and Rich in Cysteine in Prostate Carcinogenesis: Development of a 3D Nanostructured Bone-Like Model.
    Ribeiro N; Costa-Pinheiro P; Henrique R; Gomez-Lazaro M; Pereira MP; Mansur AAP; Mansur HS; Jerónimo C; Sousa SR; Monteiro FJ
    J Biomed Nanotechnol; 2016 Aug; 12(8):1667-78. PubMed ID: 29342345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.
    Fitzgerald KA; Guo J; Tierney EG; Curtin CM; Malhotra M; Darcy R; O'Brien FJ; O'Driscoll CM
    Biomaterials; 2015 Oct; 66():53-66. PubMed ID: 26196533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secreted Protein Acidic and Rich in Cysteine (SPARC) Mediates Metastatic Dormancy of Prostate Cancer in Bone.
    Sharma S; Xing F; Liu Y; Wu K; Said N; Pochampally R; Shiozawa Y; Lin HK; Balaji KC; Watabe K
    J Biol Chem; 2016 Sep; 291(37):19351-63. PubMed ID: 27422817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secreted protein acidic and rich in cysteine (SPARC) induces epithelial-mesenchymal transition, enhancing migration and invasion, and is associated with high Gleason score in prostate cancer.
    López-Moncada F; Torres MJ; Castellón EA; Contreras HR
    Asian J Androl; 2019; 21(6):557-564. PubMed ID: 31031331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines.
    Xu K; Ganapathy K; Andl T; Wang Z; Copland JA; Chakrabarti R; Florczyk SJ
    Biomaterials; 2019 Oct; 217():119311. PubMed ID: 31279100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro design of mesenchymal to epithelial transition of prostate cancer metastasis using 3D nanoclay bone-mimetic scaffolds.
    Molla MS; Katti DR; Katti KS
    J Tissue Eng Regen Med; 2018 Mar; 12(3):727-737. PubMed ID: 28603879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis.
    Sieh S; Taubenberger AV; Lehman ML; Clements JA; Nelson CC; Hutmacher DW
    Bone; 2014 Jun; 63():121-31. PubMed ID: 24530694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing.
    Cecilia A; Baecker A; Hamann E; Rack A; van de Kamp T; Gruhl FJ; Hofmann R; Moosmann J; Hahn S; Kashef J; Bauer S; Farago T; Helfen L; Baumbach T
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():465-472. PubMed ID: 27987733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin β1.
    Shin M; Mizokami A; Kim J; Ofude M; Konaka H; Kadono Y; Kitagawa Y; Miwa S; Kumaki M; Keller ET; Namiki M
    Prostate; 2013 Aug; 73(11):1159-70. PubMed ID: 23532895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.
    Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC
    Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular pathway for cancer metastasis to bone.
    De S; Chen J; Narizhneva NV; Heston W; Brainard J; Sage EH; Byzova TV
    J Biol Chem; 2003 Oct; 278(40):39044-50. PubMed ID: 12885781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone matrix osteonectin limits prostate cancer cell growth and survival.
    Kapinas K; Lowther KM; Kessler CB; Tilbury K; Lieberman JR; Tirnauer JS; Campagnola P; Delany AM
    Matrix Biol; 2012 Jun; 31(5):299-307. PubMed ID: 22525512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations.
    Mateo F; Meca-Cortés O; Celià-Terrassa T; Fernández Y; Abasolo I; Sánchez-Cid L; Bermudo R; Sagasta A; Rodríguez-Carunchio L; Pons M; Cánovas V; Marín-Aguilera M; Mengual L; Alcaraz A; Schwartz S; Mellado B; Aguilera KY; Brekken R; Fernández PL; Paciucci R; Thomson TM
    Mol Cancer; 2014 Oct; 13():237. PubMed ID: 25331979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment.
    Reichert JC; Quent VM; Burke LJ; Stansfield SH; Clements JA; Hutmacher DW
    Biomaterials; 2010 Nov; 31(31):7928-36. PubMed ID: 20688384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds.
    Kumar A; Nune KC; Misra RD
    J Biomed Mater Res A; 2016 Jun; 104(6):1343-51. PubMed ID: 26799466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway.
    Yang J; Fizazi K; Peleg S; Sikes CR; Raymond AK; Jamal N; Hu M; Olive M; Martinez LA; Wood CG; Logothetis CJ; Karsenty G; Navone NM
    Cancer Res; 2001 Jul; 61(14):5652-9. PubMed ID: 11454720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.