These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 28371347)
1. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C Dhali D; Coutte F; Arias AA; Auger S; Bidnenko V; Chataigné G; Lalk M; Niehren J; de Sousa J; Versari C; Jacques P Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28371347 [TBL] [Abstract][Full Text] [Related]
2. Genetic engineering of the precursor supply pathway for the overproduction of the nC Hu F; Cai W; Lin J; Wang W; Li S Microb Cell Fact; 2021 May; 20(1):96. PubMed ID: 33964901 [TBL] [Abstract][Full Text] [Related]
3. Genetic engineering of the branched-chain fatty acid biosynthesis pathway to enhance surfactin production from Bacillus subtilis. Jing YF; Wei HX; Liu FF; Liu YF; Zhou L; Liu JF; Yang SZ; Zhang HZ; Mu BZ Biotechnol Appl Biochem; 2023 Feb; 70(1):238-248. PubMed ID: 35419893 [TBL] [Abstract][Full Text] [Related]
4. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Wang C; Cao Y; Wang Y; Sun L; Song H Microb Cell Fact; 2019 May; 18(1):90. PubMed ID: 31122258 [TBL] [Abstract][Full Text] [Related]
5. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Hu F; Liu Y; Li S Microb Cell Fact; 2019 Feb; 18(1):42. PubMed ID: 30819187 [TBL] [Abstract][Full Text] [Related]
6. Three non-aspartate amino acid mutations in the ComA Response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis. Wang X; Luo C; Liu Y; Nie Y; Liu Y; Zhang R; Chen Z J Microbiol Biotechnol; 2010 Feb; 20(2):301-10. PubMed ID: 20208433 [TBL] [Abstract][Full Text] [Related]
7. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis. Wang X; Chen Z; Feng H; Chen X; Wei L Microb Cell Fact; 2019 Aug; 18(1):141. PubMed ID: 31426791 [TBL] [Abstract][Full Text] [Related]
8. Structural Analysis of the Lipopeptide Produced by the Bacillus subtilis Mutant R2-104 with Mutagenesis. Meng Y; Zhao W; You J; Gang HZ; Liu JF; Yang SZ; Ye RQ; Mu BZ Appl Biochem Biotechnol; 2016 Jul; 179(6):973-85. PubMed ID: 27020566 [TBL] [Abstract][Full Text] [Related]
9. Importance of the long-chain fatty acid beta-hydroxylating cytochrome P450 enzyme YbdT for lipopeptide biosynthesis in Bacillus subtilis strain OKB105. Youssef NH; Wofford N; McInerney MJ Int J Mol Sci; 2011; 12(3):1767-86. PubMed ID: 21673922 [TBL] [Abstract][Full Text] [Related]
10. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Yang H; Li X; Li X; Yu H; Shen Z Anal Bioanal Chem; 2015 Mar; 407(9):2529-42. PubMed ID: 25662934 [TBL] [Abstract][Full Text] [Related]
11. Quantitative analyses of the isoforms of surfactin produced by Bacillus subtilis HSO 121 using GC-MS. Zhao Y; Yang SZ; Mu BZ Anal Sci; 2012; 28(8):789-93. PubMed ID: 22878634 [TBL] [Abstract][Full Text] [Related]
12. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Wu Q; Zhi Y; Xu Y Metab Eng; 2019 Mar; 52():87-97. PubMed ID: 30453038 [TBL] [Abstract][Full Text] [Related]
13. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Jung J; Yu KO; Ramzi AB; Choe SH; Kim SW; Han SO Biotechnol Bioeng; 2012 Sep; 109(9):2349-56. PubMed ID: 22511326 [TBL] [Abstract][Full Text] [Related]
14. Effects of branched-chain amino acids on surfactin structure and antibacterial activity in Bacillus velezensis YA215. Yu F; Shen Y; Pang Y; Fan H; Liu M; Liu X World J Microbiol Biotechnol; 2024 Jul; 40(9):281. PubMed ID: 39060617 [TBL] [Abstract][Full Text] [Related]
15. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. Coutte F; Leclère V; Béchet M; Guez JS; Lecouturier D; Chollet-Imbert M; Dhulster P; Jacques P J Appl Microbiol; 2010 Aug; 109(2):480-491. PubMed ID: 20148996 [TBL] [Abstract][Full Text] [Related]
16. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Tsuge K; Ano T; Shoda M Arch Microbiol; 1996 Apr; 165(4):243-51. PubMed ID: 8639027 [TBL] [Abstract][Full Text] [Related]
17. Modeling leucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Coutte F; Niehren J; Dhali D; John M; Versari C; Jacques P Biotechnol J; 2015 Aug; 10(8):1216-34. PubMed ID: 26220295 [TBL] [Abstract][Full Text] [Related]
18. Detection of biosurfactants in Bacillus species: genes and products identification. Płaza G; Chojniak J; Rudnicka K; Paraszkiewicz K; Bernat P J Appl Microbiol; 2015 Oct; 119(4):1023-34. PubMed ID: 26171834 [TBL] [Abstract][Full Text] [Related]
19. [Purification and identification of surfactin isoforms produced by Bacillus subtilis B2 strain]. Gao X; Yao S; Huong P; Joachim V; Wang J Wei Sheng Wu Xue Bao; 2003 Oct; 43(5):647-52. PubMed ID: 16281564 [TBL] [Abstract][Full Text] [Related]
20. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. Lilge L; Vahidinasab M; Adiek I; Becker P; Kuppusamy Nesamani C; Treinen C; Hoffmann M; Morabbi Heravi K; Henkel M; Hausmann R Microbiologyopen; 2021 Oct; 10(5):e1241. PubMed ID: 34713601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]