These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28371490)

  • 1. Graphene Multielectrode Arrays as a Versatile Tool for Extracellular Measurements.
    Kireev D; Seyock S; Lewen J; Maybeck V; Wolfrum B; Offenhäusser A
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28371490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile Flexible Graphene Multielectrode Arrays.
    Kireev D; Seyock S; Ernst M; Maybeck V; Wolfrum B; Offenhäusser A
    Biosensors (Basel); 2016 Dec; 7(1):. PubMed ID: 28025564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene microelectrode arrays for neural activity detection.
    Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J
    J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes.
    Dipalo M; Amin H; Lovato L; Moia F; Caprettini V; Messina GC; Tantussi F; Berdondini L; De Angelis F
    Nano Lett; 2017 Jun; 17(6):3932-3939. PubMed ID: 28534411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity.
    Kireev D; Brambach M; Seyock S; Maybeck V; Fu W; Wolfrum B; Offenhäusser A
    Sci Rep; 2017 Jul; 7(1):6658. PubMed ID: 28751775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation.
    Mendis GD; Morrisroe E; Petrou S; Halgamuge SK
    J Neural Eng; 2016 Apr; 13(2):026009. PubMed ID: 26861133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computationally efficient simulation of extracellular recordings with multielectrode arrays.
    Thorbergsson PT; Garwicz M; Schouenborg J; Johansson AJ
    J Neurosci Methods; 2012 Oct; 211(1):133-44. PubMed ID: 22960053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys.
    Bonini L; Maranesi M; Livi A; Bruni S; Fogassi L; Holzhammer T; Paul O; Ruther P
    Biomed Tech (Berl); 2014 Aug; 59(4):273-81. PubMed ID: 24434299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular detection of neuronal coupling.
    Guzman E; Cheng Z; Hansma PK; Tovar KR; Petzold LR; Kosik KS
    Sci Rep; 2021 Jul; 11(1):14733. PubMed ID: 34282275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of intrinsic spiking in spinal cord neurons.
    Czarnecki A; Magloire V; Streit J
    J Neurophysiol; 2009 Oct; 102(4):2441-52. PubMed ID: 19675293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive Graphene Optoelectronic Probes for Recording Electrical Activities of Individual Synapses.
    Wang R; Shi M; Brewer B; Yang L; Zhang Y; Webb DJ; Li D; Xu YQ
    Nano Lett; 2018 Sep; 18(9):5702-5708. PubMed ID: 30063361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1580-90. PubMed ID: 12549740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative differences in developmental profiles of spontaneous activity in cortical and hippocampal cultures.
    Charlesworth P; Cotterill E; Morton A; Grant SG; Eglen SJ
    Neural Dev; 2015 Jan; 10(1):1. PubMed ID: 25626996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E; Ghirardi M; Fiumara F; Rosell X; Cabestany J
    J Neural Eng; 2005 Jun; 2(2):L1-7. PubMed ID: 15928406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multisite recording of extracellular potentials produced by microchannel-confined neurons in-vitro.
    Claverol-Tinturé E; Cabestany J; Rosell X
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):331-5. PubMed ID: 17278590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.