These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28371490)

  • 21. Precision of neuronal localization in 2D cell cultures by using high-performance electropolymerized microelectrode arrays correlated with optical imaging.
    Ghazal M; Scholaert C; Dumortier C; Lefebvre C; Barois N; Janel S; Tarhan MC; Colin M; Buée L; Halliez S; Pecqueur S; Coffinier Y; Alibart F; Yger P
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36745905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.
    Bhavsar MB; Heinrich R; Stumpner A
    J Neurosci Methods; 2015 Dec; 256():63-73. PubMed ID: 26335799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Independently movable multielectrode array to record multiple fast-spiking neurons in the cerebral cortex during cognition.
    Johnson JL; Welsh JP
    Methods; 2003 May; 30(1):64-78. PubMed ID: 12695104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large extracellular spikes recordable from axons in microtunnels.
    Pan L; Alagapan S; Franca E; DeMarse T; Brewer GJ; Wheeler BC
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):453-9. PubMed ID: 24240004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.
    Brüggemann D; Wolfrum B; Maybeck V; Mourzina Y; Jansen M; Offenhäusser A
    Nanotechnology; 2011 Jul; 22(26):265104. PubMed ID: 21586820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modular microstructure design to build neuronal networks of defined functional connectivity.
    Forró C; Thompson-Steckel G; Weaver S; Weydert S; Ihle S; Dermutz H; Aebersold MJ; Pilz R; Demkó L; Vörös J
    Biosens Bioelectron; 2018 Dec; 122():75-87. PubMed ID: 30243047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays.
    Regalia G; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2015; 2015():172396. PubMed ID: 25977683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications.
    Gabriel G; Gómez R; Bongard M; Benito N; Fernández E; Villa R
    Biosens Bioelectron; 2009 Mar; 24(7):1942-8. PubMed ID: 19056255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.
    Maybeck V; Edgington R; Bongrain A; Welch JO; Scorsone E; Bergonzo P; Jackman RB; Offenhäusser A
    Adv Healthc Mater; 2014 Feb; 3(2):283-9. PubMed ID: 23949946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of bursting and synchrony in cultured hippocampal neurons.
    Eisenman LN; Emnett CM; Mohan J; Zorumski CF; Mennerick S
    J Neurophysiol; 2015 Aug; 114(2):1059-71. PubMed ID: 26041823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays.
    Van Pelt J; Corner MA; Wolters PS; Rutten WL; Ramakers GJ
    Neurosci Lett; 2004 May; 361(1-3):86-9. PubMed ID: 15135900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards a noise prediction model for in vivo neural recording.
    López CM; Welkenhuysen M; Musa S; Eberle W; Bartic C; Puers R; Gielen G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():759-62. PubMed ID: 23366003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons.
    Liu R; Chen R; Elthakeb AT; Lee SH; Hinckley S; Khraiche ML; Scott J; Pre D; Hwang Y; Tanaka A; Ro YG; Matsushita AK; Dai X; Soci C; Biesmans S; James A; Nogan J; Jungjohann KL; Pete DV; Webb DB; Zou Y; Bang AG; Dayeh SA
    Nano Lett; 2017 May; 17(5):2757-2764. PubMed ID: 28384403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays.
    Cadotte AJ; DeMarse TB
    J Neural Eng; 2005 Dec; 2(4):114-22. PubMed ID: 16317235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.
    Guo R; Zhang S; Xiao M; Qian F; He Z; Li D; Zhang X; Li H; Yang X; Wang M; Chai R; Tang M
    Biomaterials; 2016 Nov; 106():193-204. PubMed ID: 27566868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SIMONE: a realistic neural network simulator to reproduce MEA-based recordings.
    Escolá R; Pouzat C; Chaffiol A; Yvert B; Magnin IE; Guillemaud R
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):149-60. PubMed ID: 18403283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.