These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 28371520)

  • 1. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.
    Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N
    ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells.
    Qiu Y; Liu W; Chen W; Chen W; Zhou G; Hsu PC; Zhang R; Liang Z; Fan S; Zhang Y; Cui Y
    Sci Adv; 2016 Jun; 2(6):e1501764. PubMed ID: 27386565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer.
    Hisatomi T; Dotan H; Stefik M; Sivula K; Rothschild A; Grätzel M; Mathews N
    Adv Mater; 2012 May; 24(20):2699-702. PubMed ID: 22508522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of α-Fe
    Makimizu Y; Nguyen NT; Tucek J; Ahn HJ; Yoo J; Poornajar M; Hwang I; Kment S; Schmuki P
    Chemistry; 2020 Feb; 26(12):2685-2692. PubMed ID: 31788871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-Temperature Atomic Layer Deposition of Al
    Kot M; Das C; Wang Z; Henkel K; Rouissi Z; Wojciechowski K; Snaith HJ; Schmeisser D
    ChemSusChem; 2016 Dec; 9(24):3401-3406. PubMed ID: 27925444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P
    ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing a Transparent CdIn
    Meng L; Wang M; Sun H; Tian W; Xiao C; Wu S; Cao F; Li L
    Adv Mater; 2020 Jul; 32(30):e2002893. PubMed ID: 32567132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Al
    Zhang J; Hultqvist A; Zhang T; Jiang L; Ruan C; Yang L; Cheng Y; Edoff M; Johansson EMJ
    ChemSusChem; 2017 Oct; 10(19):3810-3817. PubMed ID: 28857493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH; Leite LD; Leite ER
    ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting.
    Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P
    ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surviving High-Temperature Calcination: ZrO
    Li C; Li A; Luo Z; Zhang J; Chang X; Huang Z; Wang T; Gong J
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4150-4155. PubMed ID: 28220996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.