BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28371625)

  • 1. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space.
    Mahou R; Zhang DKY; Vlahos AE; Sefton MV
    Biomaterials; 2017 Jul; 131():27-35. PubMed ID: 28371625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation.
    Kinney SM; Ortaleza K; Vlahos AE; Sefton MV
    Biomaterials; 2022 Feb; 281():121342. PubMed ID: 34995903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-Interpenetrating Polymer Network of Hyaluronan and Chitosan Self-Healing Hydrogels for Central Nervous System Repair.
    Liu Y; Hsu YH; Huang AP; Hsu SH
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40108-40120. PubMed ID: 32808527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel composite construct increases the vascularization potential of PEG hydrogels through the incorporation of large fibrin ribbons.
    Mason MN; Mahoney MJ
    J Biomed Mater Res A; 2010 Oct; 95(1):283-93. PubMed ID: 20607870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes.
    Rios PD; Skoumal M; Liu J; Youngblood R; Kniazeva E; Garcia AJ; Shea LD
    Biotechnol Bioeng; 2018 Sep; 115(9):2356-2364. PubMed ID: 29873059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ-Forming Collagen-Hyaluronate Semi-Interpenetrating Network Hydrogel Enhances Corneal Defect Repair.
    Chen F; Mundy DC; Le P; Seo YA; Logan CM; Fernandes-Cunha GM; Basco CA; Myung D
    Transl Vis Sci Technol; 2022 Oct; 11(10):22. PubMed ID: 36239965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of diabetes by the creation of neo-islet tissues into a subcutaneous site using islet cell sheets.
    Saito T; Ohashi K; Utoh R; Shimizu H; Ise K; Suzuki H; Yamato M; Okano T; Gotoh M
    Transplantation; 2011 Dec; 92(11):1231-6. PubMed ID: 22124282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered VEGF-releasing PEG-MAL hydrogel for pancreatic islet vascularization.
    Phelps EA; Templeman KL; Thulé PM; García AJ
    Drug Deliv Transl Res; 2015 Apr; 5(2):125-36. PubMed ID: 25787738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extra-Hepatic Islet Transplantation: Validation of the h-Omental Matrix Islet filliNG (hOMING) Technique on a Rodent Model Using an Alginate Carrier.
    Schaschkow A; Sigrist S; Mura C; Dissaux C; Bouzakri K; Lejay A; Bruant-Rodier C; Pinget M; Maillard E
    Cell Transplant; 2018 Aug; 27(8):1289-1293. PubMed ID: 29996661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Blood Glucose Using Islets Encapsulated in a Melanin-Modified Immune-Shielding Hydrogel.
    Huang L; Xiang J; Cheng Y; Xiao L; Wang Q; Zhang Y; Xu T; Chen Q; Xin H; Wang X
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12877-12887. PubMed ID: 33689267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scalable device-less biomaterial approach for subcutaneous islet transplantation.
    Vlahos AE; Talior-Volodarsky I; Kinney SM; Sefton MV
    Biomaterials; 2021 Feb; 269():120499. PubMed ID: 33168223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications.
    Bracaglia LG; Messina M; Winston S; Kuo CY; Lerman M; Fisher JP
    Biomacromolecules; 2017 Nov; 18(11):3802-3811. PubMed ID: 28976740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimide-conjugated PEG-lipid with multifunctional crosslinkers.
    Teramura Y; Oommen OP; Olerud J; Hilborn J; Nilsson B
    Biomaterials; 2013 Apr; 34(11):2683-93. PubMed ID: 23347835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation.
    Xie D; Smyth CA; Eckstein C; Bilbao G; Mays J; Eckhoff DE; Contreras JL
    Biomaterials; 2005 Feb; 26(4):403-12. PubMed ID: 15275814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
    Chiu YC; Cheng MH; Engel H; Kao SW; Larson JC; Gupta S; Brey EM
    Biomaterials; 2011 Sep; 32(26):6045-51. PubMed ID: 21663958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspects of the alternative host response to methacrylic acid containing biomaterials.
    Ortaleza K; Won SY; Kinney SM; Sefton MV
    J Biomed Mater Res A; 2024 Aug; 112(8):1276-1285. PubMed ID: 38053493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpenetrating network hydrogels via simultaneous "click chemistry" and atom transfer radical polymerization.
    Xu LQ; Yao F; Fu GD; Kang ET
    Biomacromolecules; 2010 Jul; 11(7):1810-7. PubMed ID: 20518556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes.
    Phelps EA; Headen DM; Taylor WR; Thulé PM; García AJ
    Biomaterials; 2013 Jun; 34(19):4602-11. PubMed ID: 23541111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation: An in vivo study in streptozotocin-induced diabetic mouse.
    Yang KC; Qi Z; Wu CC; Shirouza Y; Lin FH; Yanai G; Sumi S
    Biochem Biophys Res Commun; 2010 Mar; 393(4):818-23. PubMed ID: 20171166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.