These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28371662)

  • 21. Age and falls history effects on antagonist leg muscle coactivation during walking with balance perturbations.
    Thompson JD; Plummer P; Franz JR
    Clin Biomech (Bristol, Avon); 2018 Nov; 59():94-100. PubMed ID: 30216784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of visual focus and gait speed on walking balance in the frontal plane.
    Goodworth A; Perrone K; Pillsbury M; Yargeau M
    Hum Mov Sci; 2015 Aug; 42():15-26. PubMed ID: 25918828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical response to mediolateral foot-placement perturbations during walking.
    Brough LG; Klute GK; Neptune RR
    J Biomech; 2021 Feb; 116():110213. PubMed ID: 33465580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive control of dynamic balance in human gait on a split-belt treadmill.
    Buurke TJW; Lamoth CJC; Vervoort D; van der Woude LHV; den Otter R
    J Exp Biol; 2018 Jul; 221(Pt 13):. PubMed ID: 29773683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Neuromuscular Origins of Kinematic Variability during Perturbed Walking.
    Stokes HE; Thompson JD; Franz JR
    Sci Rep; 2017 Apr; 7(1):808. PubMed ID: 28400615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive Control of Dynamic Balance across the Adult Lifespan.
    Vervoort D; Buurke TJW; Vuillerme N; Hortobágyi T; DEN Otter R; Lamoth CJC
    Med Sci Sports Exerc; 2020 Oct; 52(10):2270-2277. PubMed ID: 32301854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
    Barton SL; Matthis JS; Fajen BR
    Exp Brain Res; 2019 Jul; 237(7):1673-1690. PubMed ID: 30976822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upward perturbations trigger a stumbling effect.
    Cano Porras D; Heimler B; Jacobs JV; Naor SK; Inzelberg R; Zeilig G; Plotnik M
    Hum Mov Sci; 2023 Apr; 88():103069. PubMed ID: 36871477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of visual deprivation on stability among young and older adults during treadmill walking.
    Saucedo F; Yang F
    Gait Posture; 2017 May; 54():106-111. PubMed ID: 28284144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual oscillation effects on dynamic balance control in people with multiple sclerosis.
    Riem L; Beardsley SA; Obeidat AZ; Schmit BD
    J Neuroeng Rehabil; 2022 Aug; 19(1):90. PubMed ID: 35978431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anticipatory and reactive responses to underfoot perturbations during gait in healthy adults and individuals with a recent mild traumatic brain injury.
    Kreter N; Rogers CL; Fino PC
    Clin Biomech (Bristol, Avon); 2021 Dec; 90():105496. PubMed ID: 34607181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of robot-based perturbed-balance training during treadmill walking in a high-functioning chronic stroke subject: a case-control study.
    Matjačić Z; Zadravec M; Olenšek A
    J Neuroeng Rehabil; 2018 Apr; 15(1):32. PubMed ID: 29642921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of perturbation magnitude on dynamic stability when walking in destabilizing environments.
    Sinitksi EH; Terry K; Wilken JM; Dingwell JB
    J Biomech; 2012 Aug; 45(12):2084-91. PubMed ID: 22749389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects.
    Mueller J; Engel T; Mueller S; Stoll J; Baur H; Mayer F
    PLoS One; 2017; 12(3):e0174034. PubMed ID: 28319133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does local dynamic stability during unperturbed walking predict the response to balance perturbations? An examination across age and falls history.
    Qiao M; Truong KN; Franz JR
    Gait Posture; 2018 May; 62():80-85. PubMed ID: 29529517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.