These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach. Huang HL; Tsai MT; Lin DJ; Chien CS; Hsu JT Comput Biol Med; 2010 Apr; 40(4):464-8. PubMed ID: 20304390 [TBL] [Abstract][Full Text] [Related]
3. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571 [TBL] [Abstract][Full Text] [Related]
4. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties. Chattah NL; Sharir A; Weiner S; Shahar R Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167 [TBL] [Abstract][Full Text] [Related]
5. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship. Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD Clin Biomech (Bristol); 2015 Aug; 30(7):703-12. PubMed ID: 26024555 [TBL] [Abstract][Full Text] [Related]
6. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. Bourne BC; van der Meulen MC J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990 [TBL] [Abstract][Full Text] [Related]
7. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. van Lenthe GH; Voide R; Boyd SK; Müller R Bone; 2008 Oct; 43(4):717-23. PubMed ID: 18639658 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of beam theory for estimating bone tissue modulus and yield stress from 3-point bending tests on rat femora. Arias-Moreno AJ; Ito K; van Rietbergen B J Biomech; 2020 Mar; 101():109654. PubMed ID: 32007225 [TBL] [Abstract][Full Text] [Related]
9. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Cong A; Buijs JO; Dragomir-Daescu D Med Eng Phys; 2011 Mar; 33(2):164-73. PubMed ID: 21030287 [TBL] [Abstract][Full Text] [Related]
10. Residual stress around the cortical surface in bovine femoral diaphysis. Yamada S; Tadano S J Biomech Eng; 2010 Apr; 132(4):044503. PubMed ID: 20387976 [TBL] [Abstract][Full Text] [Related]
11. Relating age and micro-architecture with apparent-level elastic constants: a micro-finite element study of female cortical bone from the anterior femoral midshaft. Donaldson FE; Pankaj P; Cooper DM; Thomas CD; Clement JG; Simpson AH Proc Inst Mech Eng H; 2011 Jun; 225(6):585-96. PubMed ID: 22034742 [TBL] [Abstract][Full Text] [Related]
12. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones. Zhang G; Jia X; Li Z; Wang Q; Gu H; Liu Y; Bai Z; Mao H J Mech Behav Biomed Mater; 2024 Mar; 151():106387. PubMed ID: 38246092 [TBL] [Abstract][Full Text] [Related]
13. Constructing anisotropic finite element model of bone from computed tomography (CT). Kazembakhshi S; Luo Y Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965 [TBL] [Abstract][Full Text] [Related]
14. Anisotropy of bovine cortical bone tissue damage properties. Szabó ME; Thurner PJ J Biomech; 2013 Jan; 46(1):2-6. PubMed ID: 23063771 [TBL] [Abstract][Full Text] [Related]
15. Developing CT based computational models of pediatric femurs. Li X; Viceconti M; Cohen MC; Reilly GC; Carré MJ; Offiah AC J Biomech; 2015 Jul; 48(10):2034-40. PubMed ID: 25895643 [TBL] [Abstract][Full Text] [Related]
16. Similar damage initiation but different failure behavior in trabecular and cortical bone tissue. Szabó ME; Zekonyte J; Katsamenis OL; Taylor M; Thurner PJ J Mech Behav Biomed Mater; 2011 Nov; 4(8):1787-96. PubMed ID: 22098878 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization. Boyle C; Kim IY J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341 [TBL] [Abstract][Full Text] [Related]
18. Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones. Kourtis LC; Carter DR; Beaupre GS Ann Biomed Eng; 2014 Aug; 42(8):1773-80. PubMed ID: 24845868 [TBL] [Abstract][Full Text] [Related]