These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28371740)

  • 1. The high cost of swing leg circumduction during human walking.
    Shorter KA; Wu A; Kuo AD
    Gait Posture; 2017 May; 54():265-270. PubMed ID: 28371740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and metabolic determinants of the preferred step width in human walking.
    Donelan JM; Kram R; Kuo AD
    Proc Biol Sci; 2001 Oct; 268(1480):1985-92. PubMed ID: 11571044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compliant walking appears metabolically advantageous at extreme step lengths.
    Kim J; Bertram JEA
    Gait Posture; 2018 Jul; 64():84-89. PubMed ID: 29883939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of step width and arm swing on energetic cost and lateral balance during running.
    Arellano CJ; Kram R
    J Biomech; 2011 Apr; 44(7):1291-5. PubMed ID: 21316058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy cost and muscular activity required for leg swing during walking.
    Gottschall JS; Kram R
    J Appl Physiol (1985); 2005 Jul; 99(1):23-30. PubMed ID: 16036902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic cost of walking with increased step variability.
    O'Connor SM; Xu HZ; Kuo AD
    Gait Posture; 2012 May; 36(1):102-7. PubMed ID: 22459093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics and energetics of walking on uneven terrain.
    Voloshina AS; Kuo AD; Daley MA; Ferris DP
    J Exp Biol; 2013 Nov; 216(Pt 21):3963-70. PubMed ID: 23913951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and energetic consequences of rolling foot shape in human walking.
    Adamczyk PG; Kuo AD
    J Exp Biol; 2013 Jul; 216(Pt 14):2722-31. PubMed ID: 23580717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy optimization is a major objective in the real-time control of step width in human walking.
    Abram SJ; Selinger JC; Donelan JM
    J Biomech; 2019 Jun; 91():85-91. PubMed ID: 31151794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stance and swing phase costs in human walking.
    Umberger BR
    J R Soc Interface; 2010 Sep; 7(50):1329-40. PubMed ID: 20356877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of constrained arm swing on vertical center of mass displacement during walking.
    Yang HS; Atkins LT; Jensen DB; James CR
    Gait Posture; 2015 Oct; 42(4):430-4. PubMed ID: 26234472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a simple rope-pulley system that mechanically couples the arms, legs, and treadmill reduces the metabolic cost of walking.
    Vega D; Arellano CJ
    J Neuroeng Rehabil; 2021 Jun; 18(1):96. PubMed ID: 34098979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking.
    Lewek MD; Osborn AJ; Wutzke CJ
    Arch Phys Med Rehabil; 2012 Jan; 93(1):123-8. PubMed ID: 22200391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altering Compliance of a Load Carriage Device in the Medial-Lateral Direction Reduces Peak Forces While Walking.
    Martin JP; Li Q
    Sci Rep; 2018 Sep; 8(1):13775. PubMed ID: 30214050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human preference for symmetric walking often disappears when one leg is constrained.
    Browne MG; Smock CS; Roemmich RT
    J Physiol; 2021 Feb; 599(4):1243-1260. PubMed ID: 33231294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.