These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28371780)

  • 1. PCA Based on Graph Laplacian Regularization and P-Norm for Gene Selection and Clustering.
    Feng CM; Gao YL; Liu JX; Zheng CH; Yu J
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):257-265. PubMed ID: 28371780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint
    Feng CM; Gao YL; Liu JX; Wang J; Wang DQ; Wen CG
    Biomed Res Int; 2017; 2017():5073427. PubMed ID: 28470011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principal Component Analysis Based on Graph Laplacian and Double Sparse Constraints for Feature Selection and Sample Clustering on Multi-View Data.
    Wu MJ; Gao YL; Liu JX; Zhu R; Wang J
    Hum Hered; 2019; 84(1):47-58. PubMed ID: 31466072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust and Efficient Biomolecular Clustering of Tumor Based on ${p}$ -Norm Singular Value Decomposition.
    Kong XZ; Liu JX; Zheng CH; Hou MX; Wang J
    IEEE Trans Nanobioscience; 2017 Jul; 16(5):341-348. PubMed ID: 28541216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data.
    Yu N; Wu MJ; Liu JX; Zheng CH; Xu Y
    IEEE Trans Cybern; 2021 Aug; 51(8):3952-3963. PubMed ID: 32603306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mixed-Norm Laplacian Regularized Low-Rank Representation Method for Tumor Samples Clustering.
    Wang J; Liu JX; Zheng CH; Wang YX; Kong XZ; Wen CG
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):172-182. PubMed ID: 29990217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Principal Component Analysis Based On Hypergraph Regularization for Sample Clustering and Co-Characteristic Gene Selection.
    Gao YL; Wu MJ; Liu JX; Zheng CH; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2420-2430. PubMed ID: 33690124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DSTPCA: Double-Sparse Constrained Tensor Principal Component Analysis Method for Feature Selection.
    Hu Y; Liu JX; Gao YL; Shang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1481-1491. PubMed ID: 31562100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint Lp-Norm and L
    Kong XZ; Song Y; Liu JX; Zheng CH; Yuan SS; Wang J; Dai LY
    Front Genet; 2021; 12():621317. PubMed ID: 33708239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dimensionality reduction of gene expression data for visualization and clustering analysis of cancer tissue samples.
    Shi J; Luo Z
    Comput Biol Med; 2010 Aug; 40(8):723-32. PubMed ID: 20637456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data.
    Feng CM; Xu Y; Hou MX; Dai LY; Shang JL
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):716. PubMed ID: 31888433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic Gene Selection Based on Robust Graph Regularized Non-Negative Matrix Factorization.
    Wang D; Liu JX; Gao YL; Zheng CH; Xu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1059-1067. PubMed ID: 26672047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data.
    Yu N; Gao YL; Liu JX; Wang J; Shang J
    Hum Genomics; 2019 Oct; 13(Suppl 1):46. PubMed ID: 31639067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A weighted principal component analysis and its application to gene expression data.
    Pinto da Costa JF; Alonso H; Roque L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):246-52. PubMed ID: 21071812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A truncated nuclear norm and graph-Laplacian regularized low-rank representation method for tumor clustering and gene selection.
    Liu Q
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):436. PubMed ID: 35057728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Rank Subspace Clustering via Discrete Constraint and Hypergraph Regularization for Tumor Molecular Pattern Discovery.
    Liu J; Cheng Y; Wang X; Cui X; Kong Y; Du J
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1500-1512. PubMed ID: 29993749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative Hypergraph Regularization Principal Component Analysis for Sample Clustering and Co-Expression Genes Network Analysis on Multi-Omics Data.
    Wu MJ; Gao YL; Liu JX; Zheng CH; Wang J
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1823-1834. PubMed ID: 31634852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image Representation and Learning With Graph-Laplacian Tucker Tensor Decomposition.
    Jiang B; Ding C; Tang J; Luo B
    IEEE Trans Cybern; 2019 Apr; 49(4):1417-1426. PubMed ID: 29994464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.
    Ma Y; Hu X; He T; Jiang X
    Methods; 2016 Dec; 111():80-84. PubMed ID: 27339941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principal Component Analysis based on Nuclear norm Minimization.
    Mi JX; Zhang YN; Lai Z; Li W; Zhou L; Zhong F
    Neural Netw; 2019 Oct; 118():1-16. PubMed ID: 31228720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.