These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28372083)

  • 41. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens.
    Cicek A; Korozlu N; Adem Kaya O; Ulug B
    Sci Rep; 2017 Mar; 7():43374. PubMed ID: 28252033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acoustofluidics 15: streaming with sound waves interacting with solid particles.
    Sadhal SS
    Lab Chip; 2012 Aug; 12(15):2600-11. PubMed ID: 22744212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.
    Johnson KA; Vormohr HR; Doinikov AA; Bouakaz A; Shields CW; López GP; Dayton PA
    Phys Rev E; 2016 May; 93(5):053109. PubMed ID: 27300980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.
    Dron O; Aider JL
    Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acoustic interaction forces between small particles in an ideal fluid.
    Silva GT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063007. PubMed ID: 25615187
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Massively Multiplexed Submicron Particle Patterning in Acoustically Driven Oscillating Nanocavities.
    Tayebi M; O'Rorke R; Wong HC; Low HY; Han J; Collins DJ; Ai Y
    Small; 2020 Apr; 16(17):e2000462. PubMed ID: 32196142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Local lubrication model for spherical particles within incompressible Navier-Stokes flows.
    Lambert B; Weynans L; Bergmann M
    Phys Rev E; 2018 Mar; 97(3-1):033313. PubMed ID: 29776061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis.
    Lenshof A; Jamal A; Dykes J; Urbansky A; Astrand-Grundström I; Laurell T; Scheding S
    Cytometry A; 2014 Nov; 85(11):933-41. PubMed ID: 25053536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm.
    Yang M; Ren KF; Gou M; Sheng X
    Opt Lett; 2013 Jun; 38(11):1784-6. PubMed ID: 23722743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Numerical simulation of single bubble dynamics under acoustic standing waves.
    Qiu S; Ma X; Huang B; Li D; Wang G; Zhang M
    Ultrason Sonochem; 2018 Dec; 49():196-205. PubMed ID: 30174251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.
    Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K
    Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry.
    Hernández-Ortiz JP; de Pablo JJ; Graham MD
    Phys Rev Lett; 2007 Apr; 98(14):140602. PubMed ID: 17501260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theory of acoustophoresis in counterpropagating surface acoustic wave fields for particle separation.
    Liu Z; Xu G; Ni Z; Chen X; Guo X; Tu J; Zhang D
    Phys Rev E; 2021 Mar; 103(3-1):033104. PubMed ID: 33862812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y; Swan JW; Zia RN
    J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impedance matched channel walls in acoustofluidic systems.
    Leibacher I; Schatzer S; Dual J
    Lab Chip; 2014 Feb; 14(3):463-70. PubMed ID: 24310918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.