These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28372097)

  • 21. Synthetic mucus for an ex vivo phonation setup: Creation, application, and effect on excised porcine larynges.
    Peters G; Jakubaß B; Weidenfeller K; Kniesburges S; Böhringer D; Wendler O; Mueller SK; Gostian AO; Berry DA; Döllinger M; Semmler M
    J Acoust Soc Am; 2022 Dec; 152(6):3245. PubMed ID: 36586828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model.
    Devine EE; Hoffman MR; McCulloch TM; Jiang JJ
    Laryngoscope; 2017 Feb; 127(2):396-404. PubMed ID: 27223665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamic profiles of a hemilarynx with a vocal tract.
    Alipour F; Montequin D; Tayama N
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behind the Complex Interplay of Phonation: Investigating Elasticity of Vocal Folds With Pipette Aspiration Technique During Ex Vivo Phonation Experiments.
    Scheible F; Lamprecht R; Schaan C; Veltrup R; Henningson JO; Semmler M; Sutor A
    J Voice; 2023 Mar; ():. PubMed ID: 37005126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonation threshold pressure and flow in excised human larynges.
    Mau T; Muhlestein J; Callahan S; Weinheimer KT; Chan RW
    Laryngoscope; 2011 Aug; 121(8):1743-51. PubMed ID: 21792964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ventricular pressures in phonating excised larynges.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2012 Aug; 132(2):1017-26. PubMed ID: 22894222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
    Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory Laryngeal Coordination in Airflow Conservation and Reduction of Respiratory Effort of Phonation.
    Zhang Z
    J Voice; 2016 Nov; 30(6):760.e7-760.e13. PubMed ID: 26596845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phonation Analysis Combined with 3D Reconstruction of the Thyroarytenoid Muscle in Aged Ovine Ex Vivo Larynx Models.
    Gerstenberger C; Döllinger M; Kniesburges S; Bubalo V; Karbiener M; Schlager H; Sadeghi H; Wendler O; Gugatschka M
    J Voice; 2018 Sep; 32(5):517-524. PubMed ID: 28964638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linear Measurements of Vocal Folds and Laryngeal Dimensions in Freshly Excised Human Larynges.
    Mobashir MK; Mohamed AERS; Quriba AS; Anany AM; Hassan EM
    J Voice; 2018 Sep; 32(5):525-528. PubMed ID: 29032129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech.
    Naghibolhosseini M; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF
    J Voice; 2018 Mar; 32(2):256.e1-256.e12. PubMed ID: 28647431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
    Sadeghi H; Kniesburges S; Kaltenbacher M; Schützenberger A; Döllinger M
    J Voice; 2019 Jul; 33(4):385-400. PubMed ID: 29428274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2016 Nov; 30(6):770.e1-770.e8. PubMed ID: 26778326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vocal efficiency in tracheoesophageal phonation.
    Grolman W; Eerenstein SE; Tange RA; Canu G; Bogaardt H; Dijkhuis JP; Dreschler WA; Schouwenburg PF
    Auris Nasus Larynx; 2008 Mar; 35(1):83-8. PubMed ID: 17959326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions.
    Herbst CT; Hampala V; Garcia M; Hofer R; Svec JG
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vocal intensity in falsetto phonation of a countertenor: an analysis by synthesis approach.
    Tom K; Titze IR
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1667-76. PubMed ID: 11572375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the relation between subglottal pressure and fundamental frequency in phonation.
    Titze IR
    J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [3D visualization and analysis of vocal fold dynamics].
    Bohr C; Döllinger M; Kniesburges S; Traxdorf M
    HNO; 2016 Apr; 64(4):254-61. PubMed ID: 26842549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.