These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28372113)

  • 21. Spontaneous otoacoustic emissions in humans with endolymphatic hydrops.
    Haginomori SI; Makimoto K; Tanaka H; Araki M; Takenaka H
    Laryngoscope; 2001 Jan; 111(1):96-101. PubMed ID: 11192908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A retrospective study of the spectral probability of spontaneous otoacoustic emissions: rise of octave shifted second mode after infancy.
    Braun M
    Hear Res; 2006 May; 215(1-2):39-46. PubMed ID: 16644155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.
    Long G
    Hear Res; 1998 May; 119(1-2):49-60. PubMed ID: 9641318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Additional findings on heritability and prenatal masculinization of cochlear mechanisms: click-evoked otoacoustic emissions.
    McFadden D; Loehlin JC; Pasanen EG
    Hear Res; 1996 Aug; 97(1-2):102-19. PubMed ID: 8844191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans.
    Bergevin C; Fulcher A; Richmond S; Velenovsky D; Lee J
    Hear Res; 2012 Mar; 285(1-2):20-8. PubMed ID: 22509533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Harrison WA; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Individual Differences in Behavioural Decision Weights Related to Irregularities in Cochlear Mechanics.
    Lee J; Heo I; Chang AC; Bond K; Stoelinga C; Lutfi R; Long G
    Adv Exp Med Biol; 2016; 894():457-465. PubMed ID: 27080687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evoked and spontaneous otoacoustic emissions. A comparison of neonates and adults.
    Collet L; Gartner M; Veuillet E; Moulin A; Morgon A
    Brain Dev; 1993; 15(4):249-52. PubMed ID: 8250144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basic characteristics of distortion product otoacoustic emissions in infants and children.
    Prieve BA; Fitzgerald TS; Schulte LE; Kemp DT
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2871-9. PubMed ID: 9373974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions.
    Kulawiec JT; Orlando MS
    Ear Hear; 1995 Oct; 16(5):515-20. PubMed ID: 8654906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba).
    Engler S; Köppl C; Manley GA; de Kleine E; van Dijk P
    Hear Res; 2020 Jan; 385():107835. PubMed ID: 31710933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient otoacoustic emissions in the detection of olivocochlear bundle maturation.
    Gkoritsa E; Tsakanikos M; Korres S; Dellagrammaticas H; Apostolopoulos N; Ferekidis E
    Int J Pediatr Otorhinolaryngol; 2006 Apr; 70(4):671-6. PubMed ID: 16198429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chirp-evoked otoacoustic emissions in children.
    Jedrzejczak WW; Kochanek K; Sliwa L; Pilka E; Piotrowska A; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):101-6. PubMed ID: 23116905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears.
    Keefe DH; Abdala C
    J Acoust Soc Am; 2007 Feb; 121(2):978-93. PubMed ID: 17348521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of spontaneous otoacoustic emissions in chinchillas from carboplatin-induced inner hair cell loss.
    Hofstetter P; Ding D; Salvi R
    Hear Res; 2000 Dec; 150(1-2):132-6. PubMed ID: 11077198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incidence of spontaneous otoacoustic emissions in children and infants.
    Strickland EA; Burns EM; Tubis A
    J Acoust Soc Am; 1985 Sep; 78(3):931-5. PubMed ID: 4031263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency shift of individual spontaneous otoacoustic emissions in preterm infants.
    Brienesse P; Anteunis LJ; Maertzdorf WJ; Blanco CE; Manni JJ
    Pediatr Res; 1997 Oct; 42(4):478-83. PubMed ID: 9380439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence of peripheral hearing asymmetry in humans: clinical implications.
    Khalfa S; Morlet T; Micheyl C; Morgon A; Collet L
    Acta Otolaryngol; 1997 Mar; 117(2):192-6. PubMed ID: 9105446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.