These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28372139)

  • 1. Angular coherence in ultrasound imaging: Theory and applications.
    Li YL; Dahl JJ
    J Acoust Soc Am; 2017 Mar; 141(3):1582. PubMed ID: 28372139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Spatial Coherence Approach to Minimum Variance Beamforming for Plane-Wave Compounding.
    Nguyen NQ; Prager RW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; 65(4):522-534. PubMed ID: 29610083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic reciprocity of spatial coherence in ultrasound imaging.
    Bottenus N; Üstüner KF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):852-61. PubMed ID: 25965679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal transmit apodization for the maximization of lag-one coherence with applications to aberration delay estimation.
    Ali R; Duric N; Dahl JJ
    Ultrasonics; 2023 Jul; 132():107010. PubMed ID: 37105021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system.
    Fedewa RJ; Wallace KD; Holland MR; Jago JR; Ng GC; Rielly MR; Robinson BS; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):1010-22. PubMed ID: 12952092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of k-space in pulse echo ultrasound.
    Walker WF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):541-58. PubMed ID: 18244206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic coherence factor based on the standard deviation for coherent plane-wave compounding.
    Wang Y; Zheng C; Peng H
    Comput Biol Med; 2019 May; 108():249-262. PubMed ID: 31005800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speckle coherence of piecewise-stationary stochastic targets.
    Morgan MR; Trahey GE; Walker WF
    J Acoust Soc Am; 2019 Sep; 146(3):1721. PubMed ID: 31590494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial coherence of backscatter for the nonlinearly produced second harmonic for specific transmit apodizations.
    Fedewa RJ; Wallace KD; Holland MR; Jago JR; Ng GC; Rielly MR; Robinson BS; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):576-88. PubMed ID: 15217235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial phantom study on estimation of speed of sound in medium using coherence among received echo signals.
    Hasegawa H; Nagaoka R
    J Med Ultrason (2001); 2019 Jul; 46(3):297-307. PubMed ID: 30848399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalence of time and aperture domain additive noise in ultrasound coherence.
    Bottenus NB; Trahey GE
    J Acoust Soc Am; 2015 Jan; 137(1):132-8. PubMed ID: 25618045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound plane-wave imaging.
    Zhao J; Wang Y; Yu J; Guo W; Li T; Zheng YP
    Ultrasonics; 2016 Feb; 65():23-33. PubMed ID: 26582600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle coherence and implications for adaptive imaging.
    Walker WF; Trahey GE
    J Acoust Soc Am; 1997 Apr; 101(4):1847-58. PubMed ID: 9104014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison Between Compounding Techniques Using Large Beam-Steered Plane Wave Imaging for Blood Vector Velocity Imaging in a Carotid Artery Model.
    Saris AE; Hansen HH; Fekkes S; Nillesen MM; Rutten MC; de Korte CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1758-1771. PubMed ID: 27824559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-D Minimum Variance Based Plane Wave Compounding with Generalized Coherence Factor in Ultrafast Ultrasound Imaging.
    Qi Y; Wang Y; Yu J; Guo Y
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved contrast for high frame rate imaging using coherent compounding combined with spatial matched filtering.
    Lou Y; Yen JT
    Ultrasonics; 2017 Jul; 78():152-161. PubMed ID: 28351747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of motion on correlations of pulse-echo ultrasound signals: Applications in delay estimation and aperture coherence.
    Hyun D; Dahl JJ
    J Acoust Soc Am; 2020 Mar; 147(3):1323. PubMed ID: 32237854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adaptive imaging method for ultrasound coherent plane-wave compounding based on the subarray zero-cross factor.
    Zheng C; Wang H; Xu X; Peng H; Chen Q
    Ultrasonics; 2020 Jan; 100():105978. PubMed ID: 31479963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-stationary plane-wave optical pulses and the van Cittert-Zernike theorem in time.
    Lajunen H; Friberg AT; Ostlund P
    J Opt Soc Am A Opt Image Sci Vis; 2006 Oct; 23(10):2530-7. PubMed ID: 16985538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the van Cittert-Zernike theorem for intensity correlations and its applications.
    Gureyev TE; Kozlov A; Paganin DM; Nesterets YI; De Hoog F; Quiney HM
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1577-1584. PubMed ID: 29036160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.