These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 28372262)
1. Investigation of random walks knee cartilage segmentation model using inter-observer reproducibility: Data from the osteoarthritis initiative. Hong-Seng G; Sayuti KA; Karim AH Biomed Mater Eng; 2017; 28(2):75-85. PubMed ID: 28372262 [TBL] [Abstract][Full Text] [Related]
2. Intra- and inter-observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi-automated segmentation method. Bae KT; Shim H; Tao C; Chang S; Wang JH; Boudreau R; Kwoh CK Osteoarthritis Cartilage; 2009 Dec; 17(12):1589-97. PubMed ID: 19577672 [TBL] [Abstract][Full Text] [Related]
3. Interactive knee cartilage extraction using efficient segmentation software: data from the osteoarthritis initiative. Gan HS; Tan TS; Wong LX; Tham WK; Sayuti KA; Abdul Karim AH; bin Abdul Kadir MR Biomed Mater Eng; 2014; 24(6):3145-57. PubMed ID: 25227024 [TBL] [Abstract][Full Text] [Related]
4. Unifying the seeds auto-generation (SAGE) with knee cartilage segmentation framework: data from the osteoarthritis initiative. Gan HS; Sayuti KA; Ramlee MH; Lee YS; Wan Mahmud WMH; Abdul Karim AH Int J Comput Assist Radiol Surg; 2019 May; 14(5):755-762. PubMed ID: 30859457 [TBL] [Abstract][Full Text] [Related]
5. Precision, Reliability, and Responsiveness of a Novel Automated Quantification Tool for Cartilage Thickness: Data from the Osteoarthritis Initiative. Bowes MA; Guillard GA; Vincent GR; Brett AD; Wolstenholme CBH; Conaghan PG J Rheumatol; 2020 Feb; 47(2):282-289. PubMed ID: 30988122 [TBL] [Abstract][Full Text] [Related]
6. Fully automated, level set-based segmentation for knee MRIs using an adaptive force function and template: data from the osteoarthritis initiative. Ahn C; Bui TD; Lee YW; Shin J; Park H Biomed Eng Online; 2016 Aug; 15(1):99. PubMed ID: 27558127 [TBL] [Abstract][Full Text] [Related]
7. Quantitative measurement of cartilage volume with automatic cartilage segmentation in knee osteoarthritis. Hou W; Zhao J; He R; Li J; Ou Y; Du M; Xiong X; Xie B; Li L; Zhou X; Zuo P; Raithel E; Zhang Z; Chen W Clin Rheumatol; 2021 May; 40(5):1997-2006. PubMed ID: 33026551 [TBL] [Abstract][Full Text] [Related]
8. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Ambellan F; Tack A; Ehlke M; Zachow S Med Image Anal; 2019 Feb; 52():109-118. PubMed ID: 30529224 [TBL] [Abstract][Full Text] [Related]
9. Automatic human knee cartilage segmentation from 3D magnetic resonance images. Dodin P; Pelletier JP; Martel-Pelletier J; Abram F IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20639173 [TBL] [Abstract][Full Text] [Related]
10. Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion. Thaha R; Jogi SP; Rajan S; Mahajan V; Venugopal VK; Mehndiratta A; Singh A Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):403-413. PubMed ID: 31927688 [TBL] [Abstract][Full Text] [Related]
11. Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method. Shim H; Chang S; Tao C; Wang JH; Kwoh CK; Bae KT Radiology; 2009 May; 251(2):548-56. PubMed ID: 19401579 [TBL] [Abstract][Full Text] [Related]
12. Semi-automated segmentation to assess the lateral meniscus in normal and osteoarthritic knees. Swanson MS; Prescott JW; Best TM; Powell K; Jackson RD; Haq F; Gurcan MN Osteoarthritis Cartilage; 2010 Mar; 18(3):344-53. PubMed ID: 19857510 [TBL] [Abstract][Full Text] [Related]
13. Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model. Tang X; Guo D; Liu A; Wu D; Liu J; Xu N; Qin Y Med Sci Monit; 2022 Jun; 28():e936733. PubMed ID: 35698440 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous super-resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative. Neubert A; Bourgeat P; Wood J; Engstrom C; Chandra SS; Crozier S; Fripp J Med Phys; 2020 Oct; 47(10):4939-4948. PubMed ID: 32745260 [TBL] [Abstract][Full Text] [Related]
16. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Eckstein F; Cicuttini F; Raynauld JP; Waterton JC; Peterfy C Osteoarthritis Cartilage; 2006; 14 Suppl A():A46-75. PubMed ID: 16713720 [TBL] [Abstract][Full Text] [Related]
17. Automated MRI assessment confirms cartilage thickness modification in patients with knee osteoarthritis: post-hoc analysis from a phase II sprifermin study. Brett A; Bowes MA; Conaghan PG; Ladel C; Guehring H; Moreau F; Eckstein F Osteoarthritis Cartilage; 2020 Nov; 28(11):1432-1436. PubMed ID: 32860991 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative. Panfilov E; Tiulpin A; Nieminen MT; Saarakkala S; Casula V J Orthop Res; 2022 May; 40(5):1113-1124. PubMed ID: 34324223 [TBL] [Abstract][Full Text] [Related]
19. Quantitative measurement of cartilage volume is possible using two-dimensional magnetic resonance imaging data sets. Schaefer LF; Nikac V; Lynch JA; Duryea J Osteoarthritis Cartilage; 2018 Jul; 26(7):920-923. PubMed ID: 29704559 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images. Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]