These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28372263)

  • 1. Extracellular matrix mimicking scaffold promotes osteogenic stem cell differentiation: A new approach in osteoporosis research.
    Moll CW; Schmiedinger T; Moll MA; Seppi T; Pfaller K; Hess MW; Gutleben K; Lindtner RA; Blauth M; Krumschnabel G; Ebner HL
    Biomed Mater Eng; 2017; 28(2):87-103. PubMed ID: 28372263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds.
    Sanaei-Rad P; Jafarzadeh Kashi TS; Seyedjafari E; Soleimani M
    Biologicals; 2016 Nov; 44(6):511-516. PubMed ID: 27720267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering.
    Wang G; Zheng L; Zhao H; Miao J; Sun C; Ren N; Wang J; Liu H; Tao X
    Tissue Eng Part A; 2011 May; 17(9-10):1341-9. PubMed ID: 21247339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells.
    Nair M; Nancy D; Krishnan AG; Anjusree GS; Vadukumpully S; Nair SV
    Nanotechnology; 2015 Apr; 26(16):161001. PubMed ID: 25824014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic differentiation of mesenchymal stem cells in fibrin-hydroxyapatite matrix in a 3-dimensional mesh scaffold.
    Jung O; Hanken H; Smeets R; Hartjen P; Friedrich RE; Schwab B; Gröbe A; Heiland M; Al-Dam A; Eichhorn W; Sehner S; Kolk A; Wöltje M; Stein JM
    In Vivo; 2014; 28(4):477-82. PubMed ID: 24982212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis.
    Venugopal J; Rajeswari R; Shayanti M; Low S; Bongso A; Dev VR; Deepika G; Choon AT; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(2):170-84. PubMed ID: 22370175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage.
    Filipowska J; Reilly GC; Osyczka AM
    Biotechnol Bioeng; 2016 Aug; 113(8):1814-24. PubMed ID: 26806539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs.
    Monfoulet LE; Becquart P; Marchat D; Vandamme K; Bourguignon M; Pacard E; Viateau V; Petite H; Logeart-Avramoglou D
    Tissue Eng Part A; 2014 Jul; 20(13-14):1827-40. PubMed ID: 24447025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow stromal cell-derived extracellular matrix promotes osteogenesis of adipose-derived stem cells.
    Zhang Z; Luo X; Xu H; Wang L; Jin X; Chen R; Ren X; Lu Y; Fu M; Huang Y; He J; Fan Z
    Cell Biol Int; 2015 Mar; 39(3):291-9. PubMed ID: 25264269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo.
    Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation.
    Raghavendran HR; Mohan S; Genasan K; Murali MR; Naveen SV; Talebian S; McKean R; Kamarul T
    Colloids Surf B Biointerfaces; 2016 Mar; 139():68-78. PubMed ID: 26700235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae.
    Wan Y; Zhuo N; Li Y; Zhao W; Jiang D
    Biochem Biophys Res Commun; 2017 Jun; 488(1):46-52. PubMed ID: 28476617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers.
    Alvarez Perez MA; Guarino V; Cirillo V; Ambrosio L
    J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold.
    Krishnamurithy G; Murali MR; Hamdi M; Abbas AA; Raghavendran HB; Kamarul T
    Regen Med; 2015; 10(5):579-90. PubMed ID: 26237702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts.
    Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q
    Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration.
    Nandakumar A; Tahmasebi Birgani Z; Santos D; Mentink A; Auffermann N; van der Werf K; Bennink M; Moroni L; van Blitterswijk C; Habibovic P
    Biofabrication; 2013 Mar; 5(1):015006. PubMed ID: 23229020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.