These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28372268)

  • 1. Synthesis and characterization of Bioglass-based bone grafts with Gelatine substitution for biomedical applications.
    Aksakal B; Demirel M
    Biomed Mater Eng; 2017; 28(2):159-168. PubMed ID: 28372268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of porosity on the structure, mechanical properties and cell viability of new bioceramics as potential bone graft substitutes.
    Demirel M; Aksakal B
    Acta Bioeng Biomech; 2018; 20(2):11-22. PubMed ID: 30220713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass.
    Ravarian R; Craft M; Dehghani F
    J Biomed Mater Res A; 2015 Sep; 103(9):2898-908. PubMed ID: 25690303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering.
    Sharifi E; Azami M; Kajbafzadeh AM; Moztarzadeh F; Faridi-Majidi R; Shamousi A; Karimi R; Ai J
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():533-541. PubMed ID: 26652405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.
    Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L
    Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass-filled polylactide foams.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):335-46. PubMed ID: 12889004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.
    Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR
    J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional porous bioscaffolds for bone tissue regeneration: fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study.
    Mallick KK; Winnett J; van Grunsven W; Lapworth J; Reilly GC
    J Biomed Mater Res A; 2012 Nov; 100(11):2948-59. PubMed ID: 22696264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and cell viability of MgO-reinforced biografts fabricated for biomedical applications.
    Demirel M
    Acta Bioeng Biomech; 2018; 20(4):83-90. PubMed ID: 30821279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials.
    Oki A; Parveen B; Hossain S; Adeniji S; Donahue H
    J Biomed Mater Res A; 2004 May; 69(2):216-21. PubMed ID: 15057994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications.
    Touri R; Moztarzadeh F; Sadeghian Z; Bizari D; Tahriri M; Mozafari M
    Biomed Res Int; 2013; 2013():465086. PubMed ID: 24294609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved in vitro biocompatibility of surface-modified hydroxyapatite sponge scaffold with gelatin and BMP-2 in comparison against a commercial bone allograft.
    Carpena NT; Min YK; Lee BT
    ASAIO J; 2015; 61(1):78-86. PubMed ID: 25248041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells' behavior on gelatin/collagen/bioglass nanofibers' scaffolds.
    Sharifi E; Ebrahimi-Barough S; Panahi M; Azami M; Ai A; Barabadi Z; Kajbafzadeh AM; Ai J
    J Biomed Mater Res A; 2016 Sep; 104(9):2210-9. PubMed ID: 27087544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanical properties of PLC-bioactive glass scaffolds fabricated via BioExtrusion.
    Fiedler T; Videira AC; Bártolo P; Strauch M; Murch GE; Ferreira JM
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():288-93. PubMed ID: 26354266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering.
    Han Z; Feng P; Gao C; Shen Y; Shuai C; Peng S
    Biomed Mater Eng; 2014; 24(6):2073-80. PubMed ID: 25226904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast-seeded bioglass/gelatin nanocomposite: a promising bone substitute in critical-size calvarial defect repair in rat.
    Johari B; Kadivar M; Lak S; Gholipourmalekabadi M; Urbanska AM; Mozafari M; Ahmadzadehzarajabad M; Azarnezhad A; Afshari S; Zargan J; Kargozar S
    Int J Artif Organs; 2016 Nov; 39(10):524-533. PubMed ID: 27901555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A convenient process to fabricate gelatin modified porous PLLA materials with high hydrophilicity and strength.
    Yin G; Zhao D; Ren Y; Zhang L; Zhou Z; Li Q
    Biomater Sci; 2016 Feb; 4(2):310-8. PubMed ID: 26568472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.