These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2837234)

  • 1. Interactions of cardiac glycosides with cells and membranes. Therapeutic and toxic doses of ouabain acting on sodium and calcium pumps in plasma membranes.
    Heller M
    Biochem Pharmacol; 1988 Jun; 37(11):2293-7. PubMed ID: 2837234
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of ouabain on ATPase activities in human erythrocyte membranes.
    Li JC; Hinds TR; Vincenzi FF
    Proc West Pharmacol Soc; 1990; 33():143-8. PubMed ID: 2177192
    [No Abstract]   [Full Text] [Related]  

  • 3. [Increased ouabain-insensitive sodium efflux in leaky red cell membranes of the patients with hereditary spherocytosis].
    Yoshimoto M; Yawata Y
    Nihon Ketsueki Gakkai Zasshi; 1982 May; 45(3):549-54. PubMed ID: 6127856
    [No Abstract]   [Full Text] [Related]  

  • 4. [HPLC method for measuring (Na(+)-K(+)) ATPase and (Ca(++)-Mg(++)) ATPase in erythrocytes from different species of mammals].
    Palma F; Ligi F; Soverchia C; Fioritti A
    Boll Soc Ital Biol Sper; 1991 Aug; 67(8):759-66. PubMed ID: 1667079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Na, K-ATPase activity in the erythrocyte membrane preparations and kidneys of spontaneously hypertensive rats].
    Kazennov AM; Maslova MN
    Fiziol Zh Im I M Sechenova; 1993 Aug; 79(8):66-72. PubMed ID: 8252103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longer term effects of ouabain on the contractility of rat isolated cardiomyocytes and on the expression of Ca and Na regulating proteins.
    Müller-Ehmsen J; Nickel J; Zobel C; Hirsch I; Bölck B; Brixius K; Schwinger RH
    Basic Res Cardiol; 2003 Mar; 98(2):90-6. PubMed ID: 12607130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ouabain insensitive Na+-stimulated ATPase activity associated to basal-lateral plasma membranes of rat kidney cells.
    Marín R; Proverbio T; Proverbio F
    Acta Cient Venez; 1983; 34(5-6):322-8. PubMed ID: 6152710
    [No Abstract]   [Full Text] [Related]  

  • 9. [Methods of evaluating sodium and potassium flow through the erythrocyte membrane].
    Martín Vasallo P; Alonso Lancho MT; Chomón Barredo B; Tabernero JM; Battaner E
    Sangre (Barc); 1983; 28(6):703-10. PubMed ID: 6324400
    [No Abstract]   [Full Text] [Related]  

  • 10. Ouabain- and Ca2(+)-sensitive ATPase activity of chimeric Na- and Ca-pump molecules.
    Luckie DB; Boyd KL; Takeyasu K
    FEBS Lett; 1991 Apr; 281(1-2):231-4. PubMed ID: 1849839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internalization of ouabain and replacement of sodium pumps in the plasma membranes of HeLa cells following block with cardiac glycosides.
    Lamb JF; Ogden P
    Q J Exp Physiol; 1982 Jan; 67(1):105-19. PubMed ID: 6281842
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanism of action of digitalis glycosides in the light of new experimental observations.
    Lüllmann H; Peters T; Preuner J
    Eur Heart J; 1982 Dec; 3 Suppl D():45-51. PubMed ID: 6130949
    [No Abstract]   [Full Text] [Related]  

  • 13. [Localization of Mg2+-ATPase in the membranes of the skeletal muscles and myocardium of the frog Rana temporaria].
    Mikhaĭlova MV; Safarian EKh; Nesterov VP
    Zh Evol Biokhim Fiziol; 1987; 23(2):180-5. PubMed ID: 3035829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in sinusoidal plasma membrane enzyme activities during the pre-replicative phase of liver regeneration.
    Enrich C; Bachs O; Soriano M; Serratosa J
    Biochim Biophys Acta; 1986 Oct; 861(2):381-4. PubMed ID: 3019405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of ATPases in retinal receptor cells.
    Ueno S; Umar H; Bambauer HJ; Ueck M
    Ophthalmic Res; 1984; 16(1-2):15-20. PubMed ID: 6328396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.
    Ishii T; Takeyasu K
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):8881-5. PubMed ID: 8415625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histochemical demonstration of Cl(-)-ATPase in rat spinal motoneurons.
    Inagaki C; Oda W; Kondo K; Kusumi M
    Brain Res; 1987 Sep; 419(1-2):375-8. PubMed ID: 2823965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-utilizing systems in the squid axons: a review on the biochemical aspects of ion-transport.
    Matsumura F; Clark JM
    Prog Neurobiol; 1982; 18(4):231-55. PubMed ID: 6128766
    [No Abstract]   [Full Text] [Related]  

  • 19. Ca-dependent inhibitor of the Na+K ATPase extracted from human red cell membranes: distinction and independence from calmodulin.
    Yingst DR; Polasek DM; Marcovitz MJ
    Prog Clin Biol Res; 1984; 168():127-32. PubMed ID: 6151187
    [No Abstract]   [Full Text] [Related]  

  • 20. Na+-stimulated ATPase activities in basolateral plasma membranes from guinea-pig small intestinal epithelial cells.
    Del Castillo JR; Robinson JW
    Biochim Biophys Acta; 1985 Jan; 812(2):413-22. PubMed ID: 2981548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.