These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28372439)

  • 1. An in situ trap capacitance measurement and ion-trapping detection scheme for a Penning ion trap facility.
    Reza A; Banerjee K; Das P; Ray K; Bandyopadhyay S; Dam B
    Rev Sci Instrum; 2017 Mar; 88(3):034705. PubMed ID: 28372439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active impedance matching of a cryogenic radio frequency resonator for ion traps.
    Schubert M; Kilzer L; Dubielzig T; Schilling M; Ospelkaus C; Hampel B
    Rev Sci Instrum; 2022 Sep; 93(9):093201. PubMed ID: 36182479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First use of high charge states for mass measurements of short-lived nuclides in a Penning trap.
    Ettenauer S; Simon MC; Gallant AT; Brunner T; Chowdhury U; Simon VV; Brodeur M; Chaudhuri A; Mané E; Andreoiu C; Audi G; López-Urrutia JR; Delheij P; Gwinner G; Lapierre A; Lunney D; Pearson MR; Ringle R; Ullrich J; Dilling J
    Phys Rev Lett; 2011 Dec; 107(27):272501. PubMed ID: 22243307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low power RF amplifier circuit for ion trap applications.
    Noriega JR; García-Delgado LA; Gómez-Fuentes R; García-Juárez A
    Rev Sci Instrum; 2016 Sep; 87(9):094704. PubMed ID: 27782577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-destructive single-pass low-noise detection of ions in a beamline.
    Schmidt S; Murböck T; Andelkovic Z; Birkl G; Nörtershäuser W; Stahl S; Vogel M
    Rev Sci Instrum; 2015 Nov; 86(11):113302. PubMed ID: 26628124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps.
    Detti A; De Pas M; Duca L; Perego E; Sias C
    Rev Sci Instrum; 2019 Feb; 90(2):023201. PubMed ID: 30831687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note: Measuring capacitance and inductance of a helical resonator and improving its quality factor by mutual inductance alteration.
    Panja S; De S; Yadav S; Sen Gupta A
    Rev Sci Instrum; 2015 May; 86(5):056104. PubMed ID: 26026565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays.
    Cruz D; Chang JP; Fico M; Guymon AJ; Austin DE; Blain MG
    Rev Sci Instrum; 2007 Jan; 78(1):015107. PubMed ID: 17503946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions.
    Lohse S; Berrocal J; Block M; Chenmarev S; Cornejo JM; Ramírez JG; Rodríguez D
    Rev Sci Instrum; 2019 Jun; 90(6):063202. PubMed ID: 31254986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps.
    Tian Y; Higgs J; Li A; Barney B; Austin DE
    J Mass Spectrom; 2014 Mar; 49(3):233-40. PubMed ID: 24619549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions.
    Peng Y; Hansen BJ; Quist H; Zhang Z; Wang M; Hawkins AR; Austin DE
    Anal Chem; 2011 Jul; 83(14):5578-84. PubMed ID: 21615163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation of buffer-gas-thermalized anions out of a multipole rf ion trap.
    Mikosch J; Frühling U; Trippel S; Schwalm D; Weidemüller M; Wester R
    Phys Rev Lett; 2007 Jun; 98(22):223001. PubMed ID: 17677838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive cooling circuits for charged particle traps using crystal resonators.
    Kaltenbacher T; Caspers F; Doser M; Kellerbauer A; Pribyl W
    Rev Sci Instrum; 2011 Nov; 82(11):114702. PubMed ID: 22128997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron capture dissociation in a radio frequency ion trap.
    Baba T; Hashimoto Y; Hasegawa H; Hirabayashi A; Waki I
    Anal Chem; 2004 Aug; 76(15):4263-6. PubMed ID: 15283558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a quadrupole ion storage trap as a source for time-of-flight mass spectrometry.
    Dangi BB; Ervin KM
    J Mass Spectrom; 2012 Jan; 47(1):41-8. PubMed ID: 22282088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion trap array mass analyzer: structure and performance.
    Li X; Jiang G; Luo C; Xu F; Wang Y; Ding L; Ding CF
    Anal Chem; 2009 Jun; 81(12):4840-6. PubMed ID: 19441854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a serial array of miniature cylindrical ion trap mass analyzers.
    Ouyang Z; Badman ER; Cooks RG
    Rapid Commun Mass Spectrom; 1999; 13(24):2444-9. PubMed ID: 10589092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penning micro-trap for quantum computing.
    Jain S; Sägesser T; Hrmo P; Torkzaban C; Stadler M; Oswald R; Axline C; Bautista-Salvador A; Ospelkaus C; Kienzler D; Home J
    Nature; 2024 Mar; 627(8004):510-514. PubMed ID: 38480890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of mass shifts in the quadrupole ion trap: dissociation of fragile ions observed with a hybrid ion trap/mass filter instrument.
    Murphy JP; Yost RA
    Rapid Commun Mass Spectrom; 2000; 14(4):270-3. PubMed ID: 10669886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digital feedback system for advanced ion manipulation techniques in Penning traps.
    Herkenhoff J; Door M; Filianin P; Huang W; Kromer K; Lange D; Schüssler RX; Schweiger C; Eliseev S; Blaum K
    Rev Sci Instrum; 2021 Oct; 92(10):103201. PubMed ID: 34717400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.