These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28372737)

  • 1. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal.
    Xu F; Zhu TT; Rao QQ; Shui SW; Li WW; He HB; Yao RS
    J Environ Sci (China); 2017 Mar; 53():132-140. PubMed ID: 28372737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk.
    Krishnani KK; Meng X; Christodoulatos C; Boddu VM
    J Hazard Mater; 2008 May; 153(3):1222-34. PubMed ID: 18006228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal.
    Popovic AL; Rusmirovic JD; Velickovic Z; Radovanovic Z; Ristic M; Pavlovic VP; Marinkovic AD
    Int J Biol Macromol; 2020 Aug; 156():1160-1173. PubMed ID: 31756461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignocellulosic Wheat Straw-Derived Ion-Exchange Adsorbent for Heavy Metals Removal.
    Krishnani KK
    Appl Biochem Biotechnol; 2016 Feb; 178(4):670-86. PubMed ID: 26494139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ions binding onto lignocellulosic biosorbent.
    Krishnani KK; Meng X; Dupont L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jun; 44(7):688-99. PubMed ID: 19412851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal adsorption onto agro-based waste materials: a review.
    Demirbas A
    J Hazard Mater; 2008 Sep; 157(2-3):220-9. PubMed ID: 18291580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.
    Rungrodnimitchai S
    ScientificWorldJournal; 2014; 2014():634837. PubMed ID: 24578651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation-induced grafting of sweet sorghum stalk for copper(II) removal from aqueous solution.
    Dong J; Hu J; Wang J
    J Hazard Mater; 2013 Nov; 262():845-52. PubMed ID: 24140536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.
    Rahman MS; Sathasivam KV
    Biomed Res Int; 2015; 2015():126298. PubMed ID: 26295032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of heavy metals from aqueous solutions with tobacco dust.
    Qi BC; Aldrich C
    Bioresour Technol; 2008 Sep; 99(13):5595-601. PubMed ID: 18096382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Extraction of main constituents from rice straw and their sorption of pyrene].
    Zhao L; Sun HW; He N
    Huan Jing Ke Xue; 2010 Jun; 31(6):1575-80. PubMed ID: 20698275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fixation of heavy metals onto lignocellulosic sorbent prepared from paddy straw.
    Krishnani KK; Meng X; Boddu VM
    Water Environ Res; 2008 Nov; 80(11):2165-74. PubMed ID: 19024732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals.
    Zhou Y; Zhang Z; Zhang J; Xia S
    J Environ Sci (China); 2016 Jul; 45():248-56. PubMed ID: 27372140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of a new multi-metal binding biosorbent.
    Abdolali A; Ngo HH; Guo WS; Lee DJ; Tung KL; Wang XC
    Bioresour Technol; 2014 May; 160():98-106. PubMed ID: 24405652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulatory effect and adsorption behavior of rhamnolipids on lignocelluloses degradation system.
    Hou J; Zhang S; Qiu Z; Han H; Zhang Q
    Bioresour Technol; 2017 Jan; 224():465-472. PubMed ID: 27923607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cellulose degrading bacterial strain used to modify rice straw can enhance Cu(II) removal from aqueous solution.
    Xue C; Zhang Q; Owens G; Chen Z
    Chemosphere; 2020 Oct; 256():127142. PubMed ID: 32464362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Modified Rice Straw Biochar as a Sustainable Solution for Simultaneous Cr(VI) and Pb(II) Removal from Wastewater: Characterization, Mechanism Insights, and Application Feasibility.
    Venkatraman Y; Arunkumar P; Kumar NS; Osman AI; Muthiah M; Al-Fatesh AS; Koduru JR
    ACS Omega; 2023 Oct; 8(41):38130-38147. PubMed ID: 37867658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption.
    Wang C; Wang H; Gu G
    Carbohydr Polym; 2018 Feb; 182():21-28. PubMed ID: 29279117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass assisted synthesis of alumina by Gardenia Jasminoides Ellis and their application for removal of Ni(II) from aqueous solution.
    Zheng N; Zhao Y; Song Q; Jia L; Fang W
    J Hazard Mater; 2013 Sep; 260():1057-63. PubMed ID: 23892172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies.
    Abdolali A; Ngo HH; Guo W; Zhou JL; Du B; Wei Q; Wang XC; Nguyen PD
    Bioresour Technol; 2015 Oct; 193():477-87. PubMed ID: 26162526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.