These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 28372741)

  • 1. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.
    Ahfir ND; Hammadi A; Alem A; Wang H; Le Bras G; Ouahbi T
    J Environ Sci (China); 2017 Mar; 53():161-172. PubMed ID: 28372741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the transport and deposition of polydispersed particles: Effects of hydrodynamics and spatiotemporal evolution of the deposition rate.
    Ma E; Ouahbi T; Wang H; Ahfir ND; Alem A; Hammadi A
    Environ Pollut; 2018 Jun; 237():1011-1022. PubMed ID: 29137889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.
    Liu Q; Cui X; Zhang C; Huang S
    Environ Technol; 2016; 37(7):854-64. PubMed ID: 26323505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloid straining within saturated heterogeneous porous media.
    Porubcan AA; Xu S
    Water Res; 2011 Feb; 45(4):1796-806. PubMed ID: 21185052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media.
    Lv X; Gao B; Sun Y; Dong S; Wu J; Jiang B; Shi X
    Sci Total Environ; 2016 Sep; 563-564():987-95. PubMed ID: 26774131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns.
    Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Tilton RD; Lowry GV
    Environ Sci Technol; 2009 Jul; 43(13):5079-85. PubMed ID: 19673310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition.
    Li X; Lin CL; Miller JD; Johnson WP
    Environ Sci Technol; 2006 Jun; 40(12):3769-74. PubMed ID: 16830540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Straining phenomena in bacteria transport through natural porous media.
    Díaz J; Rendueles M; Díaz M
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):400-9. PubMed ID: 19455361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography.
    Li X; Lin CL; Miller JD; Johnson WP
    Environ Sci Technol; 2006 Jun; 40(12):3762-8. PubMed ID: 16830539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17200-9. PubMed ID: 27215990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters.
    Masse N; Lacroix M; Wang HQ; Dupont JP
    J Contam Hydrol; 2002 Jul; 57(1-2):21-39. PubMed ID: 12143991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size.
    Sun Y; Gao B; Bradford SA; Wu L; Chen H; Shi X; Wu J
    Water Res; 2015 Jan; 68():24-33. PubMed ID: 25462714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.