These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28372751)

  • 21. Magnetic powder MnO-Fe2O3 composite--a novel material for the removal of azo-dye from water.
    Wu R; Qu J; Chen Y
    Water Res; 2005 Feb; 39(4):630-8. PubMed ID: 15707636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations.
    Shaban YA; El Sayed MA; El Maradny AA; Al Farawati RKh; Al Zobidi MI
    Chemosphere; 2013 Apr; 91(3):307-13. PubMed ID: 23261126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water.
    Muhammad S; Shukla PR; Tadé MO; Wang S
    J Hazard Mater; 2012 May; 215-216():183-90. PubMed ID: 22417400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercritical water oxidation of phenol and process enhancement with in situ formed Fe
    Al-Atta A; Sher F; Hazafa A; Zafar A; Iqbal HMN; Karahmet E; Lester E
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61896-61904. PubMed ID: 34559388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenol oxidation kinetics in water solution using iron(3)-oxide-based nano-catalysts.
    Zelmanov G; Semiat R
    Water Res; 2008 Aug; 42(14):3848-56. PubMed ID: 18657285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.
    Liou RM; Chen SH; Huang CH; Hung MY; Chang JS; Lai CL
    Water Sci Technol; 2010; 61(6):1489-98. PubMed ID: 20351428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell.
    Khilari S; Pandit S; Varanasi JL; Das D; Pradhan D
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20657-66. PubMed ID: 26315619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst.
    Valkaj KM; Katovic A; Zrncević S
    J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoelectrochemical performance of birnessite films and photoelectrocatalytic activity toward oxidation of phenol.
    Zhang H; Ding H; Wang X; Zeng C; Lu A; Li Y; Wang C
    J Environ Sci (China); 2017 Feb; 52():259-267. PubMed ID: 28254046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water.
    Singh J; Yang JK; Chang YY
    J Environ Manage; 2016 Jun; 175():60-6. PubMed ID: 27038433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient degradation of phenol using natural clay as heterogeneous Fenton-like catalyst.
    Djeffal L; Abderrahmane S; Benzina M; Fourmentin M; Siffert S; Fourmentin S
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3331-8. PubMed ID: 24234759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of bisphenol A by electro-enhanced heterogeneous activation of peroxydisulfate using Mn-Zn ferrite from spent alkaline Zn-Mn batteries.
    Deng B; Li Y; Tan W; Wang Z; Yu Z; Xing S; Lin H; Zhang H
    Chemosphere; 2018 Aug; 204():178-185. PubMed ID: 29655111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.
    Parvas M; Haghighi M; Allahyari S
    Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth.
    Liu F; Xu Y; Zhang B; Liu Y; Zhang H
    Chemosphere; 2020 Jan; 238():124611. PubMed ID: 31524605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.
    Zhang J; Sun B; Huang Y; Guan X
    Chemosphere; 2015 Dec; 141():154-61. PubMed ID: 26196405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst.
    Quintanilla A; Fraile AF; Casas JA; Rodríguez JJ
    J Hazard Mater; 2007 Jul; 146(3):582-8. PubMed ID: 17513048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles.
    Bach A; Zelmanov G; Semiat R
    Water Res; 2008 Jan; 42(1-2):163-8. PubMed ID: 17826818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Promoting catalytic ozonation of phenol over graphene through nitrogenation and Co
    Bao Q; Hui KS; Duh JG
    J Environ Sci (China); 2016 Dec; 50():38-48. PubMed ID: 28034429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance.
    Rusevova K; Kopinke FD; Georgi A
    J Hazard Mater; 2012 Nov; 241-242():433-40. PubMed ID: 23098995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.