These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2837288)

  • 1. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-force relationships in mitochondrial oxidative phosphorylation.
    Woelders H; Putters J; van Dam K
    FEBS Lett; 1986 Aug; 204(1):17-21. PubMed ID: 3743759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular mitochondrial membrane potential as an indicator of hepatocyte energy metabolism: further evidence for thermodynamic control of metabolism.
    Berry MN; Gregory RB; Grivell AR; Henly DC; Nobes CD; Phillips JW; Wallace PG
    Biochim Biophys Acta; 1988 Dec; 936(3):294-306. PubMed ID: 2461736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy coupling between H+-generating and H+-consuming pumps. Ratio between output and input forces.
    Petronilli V; Pietrobon D; Zoratti M; Azzone GF
    Eur J Biochem; 1986 Mar; 155(2):423-31. PubMed ID: 3007129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphate potential maintained by mitochondria in State 4 is proportional to the proton-motive force.
    Woelders H; van der Zande WJ; Colen AM; Wanders RJ; van Dam K
    FEBS Lett; 1985 Jan; 179(2):278-82. PubMed ID: 2981706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the relationship between rate of ATP synthesis and H+ electrochemical gradient in rat-liver mitochondria.
    Zoratti M; Pietrobon D; Azzone GF
    Eur J Biochem; 1982 Sep; 126(3):443-51. PubMed ID: 6291930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple relationships between rate of oxidative phosphorylation and delta microH in rat liver mitochondria.
    Zoratti M; Petronilli V
    FEBS Lett; 1985 Dec; 193(2):276-82. PubMed ID: 4065342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homeostasis of the protonmotive force in phosphorylating mitochondria.
    Duszyński J; Bogucka K; Wojtczak L
    Biochim Biophys Acta; 1984 Dec; 767(3):540-7. PubMed ID: 6095904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations.
    Rottenberg H
    J Membr Biol; 1984; 81(2):127-38. PubMed ID: 6492133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics.
    Rottenberg H
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3313-7. PubMed ID: 6574486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential.
    Bernardi P; Azzone GF
    Eur J Biochem; 1983 Aug; 134(2):377-83. PubMed ID: 6191982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria.
    Schönfeld P; Schild L; Kunz W
    Biochim Biophys Acta; 1989 Dec; 977(3):266-72. PubMed ID: 2556180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unequal charge separation by different coupling spans of the mitochondrial electron transport chain.
    Brand MD; Harper WG; Nicholls DG; Ingledew WJ
    FEBS Lett; 1978 Nov; 95(1):125-9. PubMed ID: 720593
    [No Abstract]   [Full Text] [Related]  

  • 18. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase.
    Nolan DP; Voorheis HP
    Eur J Biochem; 1992 Oct; 209(1):207-16. PubMed ID: 1327770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Active transport of triphenylmethylphosphonium in mitochondria].
    Skul'skiĭ IA; Glazunov VV; Baklanova SM
    Biofizika; 1982; 27(3):480-4. PubMed ID: 7093333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 2-chloroadenosine on electric potentials in brain synaptic membrane vesicles.
    Michaelis ML; Michaelis EK
    Biochim Biophys Acta; 1981 Oct; 648(1):55-62. PubMed ID: 7295731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.