BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28372945)

  • 1. Interactions stabilizing the C-terminal helix of human phospholipid scramblase 1 in lipid bilayers: A computational study.
    Venken T; Schillinger AS; Fuglebakk E; Reuter N
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1200-1210. PubMed ID: 28372945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1.
    Posada IM; Busto JV; Goñi FM; Alonso A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):388-97. PubMed ID: 24099740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity.
    Francis VG; Mohammed AM; Aradhyam GK; Gummadi SN
    FEBS J; 2013 Jun; 280(12):2855-69. PubMed ID: 23590222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cholesterol recognition motif in human phospholipid scramblase 1.
    Posada IM; Fantini J; Contreras FX; Barrantes F; Alonso A; Goñi FM
    Biophys J; 2014 Sep; 107(6):1383-92. PubMed ID: 25229146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane binding of human phospholipid scramblase 1 cytoplasmic domain.
    Posada IM; Sánchez-Magraner L; Hervás JH; Alonso A; Monaco HL; Goñi FM
    Biochim Biophys Acta; 2014 Jul; 1838(7):1785-92. PubMed ID: 24680654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid Scramblases Remodel the Shape of Asymmetric Membranes.
    Siggel M; Bhaskara RM; Hummer G
    J Phys Chem Lett; 2019 Oct; 10(20):6351-6354. PubMed ID: 31566982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment.
    Jones DH; Barber KR; VanDerLoo EW; Grant CW
    Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices.
    Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE
    Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol interaction attenuates scramblase activity of SCRM-1 in the artificial membrane.
    Koyiloth M; Gummadi SN
    Biochim Biophys Acta Biomembr; 2021 Sep; 1863(9):183548. PubMed ID: 33417966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.
    Grabon A; Orłowski A; Tripathi A; Vuorio J; Javanainen M; Róg T; Lönnfors M; McDermott MI; Siebert G; Somerharju P; Vattulainen I; Bankaitis VA
    J Biol Chem; 2017 Sep; 292(35):14438-14455. PubMed ID: 28718450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study.
    Petruk AA; Varriale S; Coscia MR; Mazzarella L; Merlino A; Oreste U
    Biochim Biophys Acta; 2013 Nov; 1828(11):2637-45. PubMed ID: 23896554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids.
    Zhou Q; Zhao J; Stout JG; Luhm RA; Wiedmer T; Sims PJ
    J Biol Chem; 1997 Jul; 272(29):18240-4. PubMed ID: 9218461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomistic insight into lipid translocation by a TMEM16 scramblase.
    Bethel NP; Grabe M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14049-14054. PubMed ID: 27872308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers.
    Fleming PJ; Freites JA; Moon CP; Tobias DJ; Fleming KG
    Biochim Biophys Acta; 2012 Feb; 1818(2):126-34. PubMed ID: 21816133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations.
    Zhang M; Ren B; Liu Y; Liang G; Sun Y; Xu L; Zheng J
    ACS Chem Neurosci; 2017 Aug; 8(8):1789-1800. PubMed ID: 28585804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat.
    Mühlhäuser P; Wadhwani P; Strandberg E; Bürck J; Ulrich AS
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2308-2318. PubMed ID: 28888369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane peptides from tyrosine kinase receptor. Mutation-related behavior in a lipid bilayer investigated by molecular dynamics simulations.
    Samna Soumana O; Aller P; Garnier N; Genest M
    J Biomol Struct Dyn; 2005 Aug; 23(1):91-100. PubMed ID: 15918680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.