BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28373012)

  • 21. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation.
    Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M
    J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis.
    Lotz JC; Cheal EJ; Hayes WC
    J Biomech Eng; 1991 Nov; 113(4):353-60. PubMed ID: 1762430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of Bone Mineral Density (BMD) Adaptation in Pelvis-Femur Model with Hip Arthroplasties.
    Abdullah AH; Todo M
    J Funct Biomater; 2021 Sep; 12(3):. PubMed ID: 34564198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphologic analysis of periprosthetic fractures after hip resurfacing arthroplasty.
    Zustin J; Krause M; Breer S; Hahn M; von Domarus C; Rüther W; Sauter G; Morlock MM; Amling M
    J Bone Joint Surg Am; 2010 Feb; 92(2):404-10. PubMed ID: 20124068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the fixation region of a press-fit hip endoprosthesis on the stress-strain state of the "bone-implant" system.
    Levadnyi I; Awrejcewicz J; Goethel MF; Loskutov A
    Comput Biol Med; 2017 May; 84():195-204. PubMed ID: 28390287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Femoral fracture load and fracture pattern is accurately predicted using a gradient-enhanced quasi-brittle finite element model.
    Haider IT; Goldak J; Frei H
    Med Eng Phys; 2018 May; 55():1-8. PubMed ID: 29551293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of pathological fracture of the femoral shaft with an osteolytic lesion using a computed tomography-based nonlinear three-dimensional finite element method.
    Chiba D; Mori Y; Sano H; Kishimoto K; Hatori M; Takahashi A; Nakajo S; Itoi E
    J Orthop Sci; 2016 Jul; 21(4):530-538. PubMed ID: 27142243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of axial compression and combined axial compression and torque loading configurations to reproduce strain in the implanted femur during activities of daily living.
    Chen X; Myers CA; Clary CW; DeWall RJ; Fritz B; Blauth M; Rullkoetter PJ
    J Biomech; 2021 May; 120():110363. PubMed ID: 33725522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interprosthetic femoral fractures.
    Mamczak CN; Gardner MJ; Bolhofner B; Borrelli J; Streubel PN; Ricci WM
    J Orthop Trauma; 2010 Dec; 24(12):740-4. PubMed ID: 21063218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An investigation on mechanical failure of hip joint using finite element method.
    Sofuoglu H; Cetin ME
    Biomed Tech (Berl); 2015 Dec; 60(6):603-16. PubMed ID: 25996481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation.
    Hambli R; Allaoui S
    Ann Biomed Eng; 2013 Dec; 41(12):2515-27. PubMed ID: 23864338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical optimization of subject-specific implant positioning for femoral head resurfacing to reduce fracture risk.
    Miles B; Kolos E; Appleyard R; Theodore W; Zheng K; Li Q; Ruys AJ
    Proc Inst Mech Eng H; 2016 Jul; 230(7):668-74. PubMed ID: 27098752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Image-based anatomical reconstruction and pharmaco-mediated bone remodeling model applied to a femur with subtrochanteric fracture: A subject-specific finite element study.
    Bahia MT; Hecke MB; Mercuri EGF
    Med Eng Phys; 2019 Jul; 69():58-71. PubMed ID: 31171487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical evaluation of fracture fixation constructs using a variable-angle locked periprosthetic femur plate system.
    Hoffmann MF; Burgers TA; Mason JJ; Williams BO; Sietsema DL; Jones CB
    Injury; 2014 Jul; 45(7):1035-41. PubMed ID: 24680467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental evaluation of new concepts in hip arthroplasty.
    Wik TS
    Acta Orthop Suppl; 2012 Apr; 83(345):1-26. PubMed ID: 22489909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation.
    Brand S; Bauer M; Petri M; Schrader J; Maier HJ; Krettek C; Hassel T
    Proc Inst Mech Eng H; 2016 Jul; 230(7):675-81. PubMed ID: 27272200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture.
    Bessho M; Ohnishi I; Okazaki H; Sato W; Kominami H; Matsunaga S; Nakamura K
    J Orthop Sci; 2004; 9(6):545-50. PubMed ID: 16228668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Risk factors for post-operative periprosthetic fractures following primary total hip arthroplasty with a proximally coated double-tapered cementless femoral component.
    Gromov K; Bersang A; Nielsen CS; Kallemose T; Husted H; Troelsen A
    Bone Joint J; 2017 Apr; 99-B(4):451-457. PubMed ID: 28385933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical evaluation of peri- and interprosthetic fractures of the femur.
    Lehmann W; Rupprecht M; Hellmers N; Sellenschloh K; Briem D; Püschel K; Amling M; Morlock M; Rueger JM
    J Trauma; 2010 Jun; 68(6):1459-63. PubMed ID: 20093986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A plasma-sprayed titanium proximal coating reduces the risk of periprosthetic femoral fracture in cementless hip arthroplasty.
    Miles B; Walter WL; Kolos E; Waters T; Appleyard R; Gillies RM; Donohoo S; Ruys AJ
    Biomed Mater Eng; 2015; 25(3):267-78. PubMed ID: 26407113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.