BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28373085)

  • 1. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling.
    Joris F; Valdepérez D; Pelaz B; Wang T; Doak SH; Manshian BB; Soenen SJ; Parak WJ; De Smedt SC; Raemdonck K
    Acta Biomater; 2017 Jun; 55():204-213. PubMed ID: 28373085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells.
    Joris F; Valdepérez D; Pelaz B; Soenen SJ; Manshian BB; Parak WJ; De Smedt SC; Raemdonck K
    J Nanobiotechnology; 2016 Sep; 14(1):69. PubMed ID: 27613519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications.
    Silva LH; da Silva JR; Ferreira GA; Silva RC; Lima EC; Azevedo RB; Oliveira DM
    J Nanobiotechnology; 2016 Jul; 14(1):59. PubMed ID: 27431051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation.
    Umashankar A; Corenblum MJ; Ray S; Valdez M; Yoshimaru ES; Trouard TP; Madhavan L
    Int J Nanomedicine; 2016; 11():1731-48. PubMed ID: 27175074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria.
    Ruan L; Li H; Zhang J; Zhou M; Huang H; Dong J; Li J; Zhao F; Wu Z; Chen J; Chai Z; Hu Y
    Talanta; 2023 Jan; 251():123770. PubMed ID: 35961081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.
    Pongrac IM; Pavičić I; Milić M; Brkić Ahmed L; Babič M; Horák D; Vinković Vrček I; Gajović S
    Int J Nanomedicine; 2016; 11():1701-15. PubMed ID: 27217748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities.
    Portilla Y; Mulens-Arias V; Daviu N; Paradela A; Pérez-Yagüe S; Barber DF
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):35906-35926. PubMed ID: 37478159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications.
    Shelat R; Chandra S; Khanna A
    Int J Biol Macromol; 2018 Apr; 110():357-365. PubMed ID: 28939520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas.
    Dyawanapelly S; Jagtap DD; Dandekar P; Ghosh G; Jain R
    Colloids Surf B Biointerfaces; 2017 Jun; 154():408-420. PubMed ID: 28388527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DMSA-coated IONPs trigger oxidative stress, mitochondrial metabolic reprograming and changes in mitochondrial disposition, hindering cell cycle progression of cancer cells.
    Daviu N; Portilla Y; Gómez de Cedrón M; Ramírez de Molina A; Barber DF
    Biomaterials; 2024 Jan; 304():122409. PubMed ID: 38052135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control.
    Shen WB; Vaccaro DE; Fishman PS; Groman EV; Yarowsky P
    Contrast Media Mol Imaging; 2016 May; 11(3):222-8. PubMed ID: 26809657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages.
    Liu L; Sha R; Yang L; Zhao X; Zhu Y; Gao J; Zhang Y; Wen LP
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41197-41206. PubMed ID: 30398340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging.
    Hachani R; Birchall MA; Lowdell MW; Kasparis G; Tung LD; Manshian BB; Soenen SJ; Gsell W; Himmelreich U; Gharagouzloo CA; Sridhar S; Thanh NTK
    Sci Rep; 2017 Aug; 7(1):7850. PubMed ID: 28798327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles.
    Rojas JM; Gavilán H; Del Dedo V; Lorente-Sorolla E; Sanz-Ortega L; da Silva GB; Costo R; Perez-Yagüe S; Talelli M; Marciello M; Morales MP; Barber DF; Gutiérrez L
    Acta Biomater; 2017 Aug; 58():181-195. PubMed ID: 28536061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.