BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28373297)

  • 1. Regulation of Protein Interactions by
    Xiong S; Couzens AL; Kean MJ; Mao DY; Guettler S; Kurinov I; Gingras AC; Sicheri F
    Mol Cell Proteomics; 2017 Jun; 16(6):1111-1125. PubMed ID: 28373297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOB1 Mediated Phospho-recognition in the Core Mammalian Hippo Pathway.
    Couzens AL; Xiong S; Knight JDR; Mao DY; Guettler S; Picaud S; Kurinov I; Filippakopoulos P; Sicheri F; Gingras AC
    Mol Cell Proteomics; 2017 Jun; 16(6):1098-1110. PubMed ID: 28373298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of mammalian sterile 20-like kinase 2-dependent phosphorylations of Mps one binder 1B in the activation of nuclear Dbf2-related kinases.
    Bao Y; Sumita K; Kudo T; Withanage K; Nakagawa K; Ikeda M; Ohno K; Wang Y; Hata Y
    Genes Cells; 2009 Dec; 14(12):1369-81. PubMed ID: 19919647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions.
    Couzens AL; Knight JD; Kean MJ; Teo G; Weiss A; Dunham WH; Lin ZY; Bagshaw RD; Sicheri F; Pawson T; Wrana JL; Choi H; Gingras AC
    Sci Signal; 2013 Nov; 6(302):rs15. PubMed ID: 24255178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threonine 74 of MOB1 is a putative key phosphorylation site by MST2 to form the scaffold to activate nuclear Dbf2-related kinase 1.
    Hirabayashi S; Nakagawa K; Sumita K; Hidaka S; Kawai T; Ikeda M; Kawata A; Ohno K; Hata Y
    Oncogene; 2008 Jul; 27(31):4281-92. PubMed ID: 18362890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling.
    Ni L; Zheng Y; Hara M; Pan D; Luo X
    Genes Dev; 2015 Jul; 29(13):1416-31. PubMed ID: 26108669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinases of the Hippo pathway: regulation and substrates.
    Avruch J; Zhou D; Fitamant J; Bardeesy N; Mou F; Barrufet LR
    Semin Cell Dev Biol; 2012 Sep; 23(7):770-84. PubMed ID: 22898666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling.
    Mana-Capelli S; McCollum D
    J Biol Chem; 2018 Nov; 293(47):18230-18241. PubMed ID: 30266805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control.
    Kulaberoglu Y; Lin K; Holder M; Gai Z; Gomez M; Assefa Shifa B; Mavis M; Hoa L; Sharif AAD; Lujan C; Smith ESJ; Bjedov I; Tapon N; Wu G; Hergovich A
    Nat Commun; 2017 Sep; 8(1):695. PubMed ID: 28947795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The characterisation of LATS2 kinase regulation in Hippo-YAP signalling.
    Hoa L; Kulaberoglu Y; Gundogdu R; Cook D; Mavis M; Gomez M; Gomez V; Hergovich A
    Cell Signal; 2016 May; 28(5):488-497. PubMed ID: 26898830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation.
    Praskova M; Xia F; Avruch J
    Curr Biol; 2008 Mar; 18(5):311-21. PubMed ID: 18328708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer.
    Chen M; Zhang H; Shi Z; Li Y; Zhang X; Gao Z; Zhou L; Ma J; Xu Q; Guan J; Cheng Y; Jiao S; Zhou Z
    J Biol Chem; 2018 Sep; 293(37):14455-14469. PubMed ID: 30072378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for autoinhibition and its relief of MOB1 in the Hippo pathway.
    Kim SY; Tachioka Y; Mori T; Hakoshima T
    Sci Rep; 2016 Jun; 6():28488. PubMed ID: 27335147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MST1 and hMOB1 tumor suppressors control human centrosome duplication by regulating NDR kinase phosphorylation.
    Hergovich A; Kohler RS; Schmitz D; Vichalkovski A; Cornils H; Hemmings BA
    Curr Biol; 2009 Nov; 19(20):1692-702. PubMed ID: 19836237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NDR kinase is activated by RASSF1A/MST1 in response to Fas receptor stimulation and promotes apoptosis.
    Vichalkovski A; Gresko E; Cornils H; Hergovich A; Schmitz D; Hemmings BA
    Curr Biol; 2008 Dec; 18(23):1889-95. PubMed ID: 19062280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NDR functions as a physiological YAP1 kinase in the intestinal epithelium.
    Zhang L; Tang F; Terracciano L; Hynx D; Kohler R; Bichet S; Hess D; Cron P; Hemmings BA; Hergovich A; Schmitz-Rohmer D
    Curr Biol; 2015 Feb; 25(3):296-305. PubMed ID: 25601544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible Protein Degradation as a Strategy to Identify Phosphoprotein Phosphatase 6 Substrates in RAS-Mutant Colorectal Cancer Cells.
    Mariano NC; Rusin SF; Nasa I; Kettenbach AN
    Mol Cell Proteomics; 2023 Aug; 22(8):100614. PubMed ID: 37392812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICAL-1 is a negative regulator of MST-NDR kinase signaling and apoptosis.
    Zhou Y; Adolfs Y; Pijnappel WW; Fuller SJ; Van der Schors RC; Li KW; Sugden PH; Smit AB; Hergovich A; Pasterkamp RJ
    Mol Cell Biol; 2011 Sep; 31(17):3603-15. PubMed ID: 21730291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and Biochemical Analyses of the Core Components of the Hippo Pathway.
    Ni L; Luo X
    Methods Mol Biol; 2019; 1893():239-256. PubMed ID: 30565138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H-ras Inhibits the Hippo Pathway by Promoting Mst1/Mst2 Heterodimerization.
    Rawat SJ; Araiza-Olivera D; Arias-Romero LE; Villamar-Cruz O; Prudnikova TY; Roder H; Chernoff J
    Curr Biol; 2016 Jun; 26(12):1556-1563. PubMed ID: 27238285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.