These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

912 related articles for article (PubMed ID: 28373358)

  • 61. The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons.
    Rao MV; Mohan PS; Kumar A; Yuan A; Montagna L; Campbell J; Veeranna ; Espreafico EM; Julien JP; Nixon RA
    PLoS One; 2011 Feb; 6(2):e17087. PubMed ID: 21359212
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease.
    Lee MK; Cleveland DW
    Curr Opin Cell Biol; 1994 Feb; 6(1):34-40. PubMed ID: 7513179
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H.
    Dong DL; Xu ZS; Hart GW; Cleveland DW
    J Biol Chem; 1996 Aug; 271(34):20845-52. PubMed ID: 8702840
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The role of neurofilament transport in the radial growth of myelinated axons.
    Nowier RM; Friedman A; Brown A; Jung P
    Mol Biol Cell; 2023 May; 34(6):ar58. PubMed ID: 36811626
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Age-related atrophy of motor axons in mice deficient in the mid-sized neurofilament subunit.
    Elder GA; Friedrich VL; Margita A; Lazzarini RA
    J Cell Biol; 1999 Jul; 146(1):181-92. PubMed ID: 10402469
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Requirement of heavy neurofilament subunit in the development of axons with large calibers.
    Elder GA; Friedrich VL; Kang C; Bosco P; Gourov A; Tu PH; Zhang B; Lee VM; Lazzarini RA
    J Cell Biol; 1998 Oct; 143(1):195-205. PubMed ID: 9763431
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system.
    Shea TB; Dahl DC; Nixon RA; Fischer I
    J Neurosci Res; 1997 Jun; 48(6):515-23. PubMed ID: 9210521
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neurofilaments: Novel findings and future challenges.
    van Asperen JV; Kotaich F; Caillol D; Bomont P
    Curr Opin Cell Biol; 2024 Apr; 87():102326. PubMed ID: 38401181
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hypophosphorylated neurofilament subunits undergo axonal transport more rapidly than more extensively phosphorylated subunits in situ.
    Jung C; Yabe JT; Lee S; Shea TB
    Cell Motil Cytoskeleton; 2000 Oct; 47(2):120-9. PubMed ID: 11013392
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases.
    Xue C; Shtylla B; Brown A
    PLoS Comput Biol; 2015 Aug; 11(8):e1004406. PubMed ID: 26285012
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The single neurofilament subunit of the lamprey forms filaments and regulates axonal caliber and neuronal size in vivo.
    Hall GF; Chu B; Lee S; Liu Y; Yao J
    Cell Motil Cytoskeleton; 2000 Jul; 46(3):166-82. PubMed ID: 10913964
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of NF-L and betaIISigma1-spectrin interaction in live cells.
    Macioce P; Gandolfi N; Leung CL; Chin SS; Malchiodi-Albedi F; Ceccarini M; Petrucci TC; Liem RK
    Exp Cell Res; 1999 Jul; 250(1):142-54. PubMed ID: 10388528
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons.
    Shea TB; Yabe JT; Ortiz D; Pimenta A; Loomis P; Goldman RD; Amin N; Pant HC
    J Cell Sci; 2004 Feb; 117(Pt 6):933-41. PubMed ID: 14762105
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regulation of neurofilament length and transport by a dynamic cycle of phospho-dependent polymer severing and annealing.
    Uchida A; Peng J; Brown A
    Mol Biol Cell; 2023 Jun; 34(7):ar68. PubMed ID: 36989035
    [TBL] [Abstract][Full Text] [Related]  

  • 75. α-Internexin and Peripherin: Expression, Assembly, Functions, and Roles in Disease.
    Zhao J; Liem RK
    Methods Enzymol; 2016; 568():477-507. PubMed ID: 26795481
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The single neurofilament subunit of lamprey may need another element for filament assembly.
    Zhang G; Spencer PH; Jin LQ; Cohlberg JA; Beaulieu JM; Julien JP; Selzer ME
    J Comp Neurol; 2004 Mar; 471(2):188-200. PubMed ID: 14986312
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neuronal intermediate filaments: new progress on an old subject.
    Xu Z; Dong DL; Cleveland DW
    Curr Opin Neurobiol; 1994 Oct; 4(5):655-61. PubMed ID: 7849521
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The polypeptide composition of moving and stationary neurofilaments in cultured sympathetic neurons.
    Yan Y; Jensen K; Brown A
    Cell Motil Cytoskeleton; 2007 Apr; 64(4):299-309. PubMed ID: 17285620
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons.
    Wong PC; Marszalek J; Crawford TO; Xu Z; Hsieh ST; Griffin JW; Cleveland DW
    J Cell Biol; 1995 Sep; 130(6):1413-22. PubMed ID: 7559762
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures.
    Angelides KJ; Smith KE; Takeda M
    J Cell Biol; 1989 Apr; 108(4):1495-506. PubMed ID: 2925792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.