BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 28373719)

  • 1. The native state of prion protein (PrP) directly inhibits formation of PrP-amyloid fibrils in vitro.
    Honda RP; Kuwata K
    Sci Rep; 2017 Apr; 7(1):562. PubMed ID: 28373719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anchorless forms of prion protein - Impact of truncation on structure destabilization and prion protein conversion.
    Kovač V; Hafner-Bratkovič I; Čurin Šerbec V
    Biochem Biophys Res Commun; 2016 Dec; 481(1-2):1-6. PubMed ID: 27836542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation.
    Mishra R; Elgland M; Begum A; Fyrner T; Konradsson P; Nyström S; Hammarström P
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):909-921. PubMed ID: 30935958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.
    Honda R; Kuwata K
    FASEB J; 2018 Jul; 32(7):3641-3652. PubMed ID: 29401635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer.
    Kakuda K; Yamaguchi KI; Kuwata K; Honda R
    Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure.
    Rouget R; Sharma G; LeBlanc AC
    J Biol Chem; 2015 Feb; 290(9):5759-71. PubMed ID: 25572400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Chaperonin GroEL by a Monomer of Ovine Prion Protein and Its Oligomeric Forms.
    Kudryavtseva SS; Stroylova YY; Zanyatkin IA; Haertle T; Muronetz VI
    Biochemistry (Mosc); 2016 Oct; 81(10):1213-1220. PubMed ID: 27908246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PrP P102L and Nearby Lysine Mutations Promote Spontaneous
    Kraus A; Raymond GJ; Race B; Campbell KJ; Hughson AG; Anson KJ; Raymond LD; Caughey B
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28835493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer.
    Matos CO; Passos YM; do Amaral MJ; Macedo B; Tempone MH; Bezerra OCL; Moraes MO; Almeida MS; Weber G; Missailidis S; Silva JL; Uversky VN; Pinheiro AS; Cordeiro Y
    FASEB J; 2020 Jan; 34(1):365-385. PubMed ID: 31914616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization.
    Moulick R; Udgaonkar JB
    J Mol Biol; 2017 Mar; 429(6):886-899. PubMed ID: 28147229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of divalent cations on elk prion protein fibril formation and stability.
    Samorodnitsky D; Nicholson EM
    Prion; 2018 Jan; 12(1):63-71. PubMed ID: 29310497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure.
    Hadži S; Ondračka A; Jerala R; Hafner-Bratkovič I
    FASEB J; 2015 Mar; 29(3):882-93. PubMed ID: 25416551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.
    Honda R
    Angew Chem Int Ed Engl; 2018 May; 57(21):6086-6089. PubMed ID: 29645399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutralizing Mutations Significantly Inhibit Amyloid Formation by Human Prion Protein and Decrease Its Cytotoxicity.
    Huang JJ; Li XN; Liu WL; Yuan HY; Gao Y; Wang K; Tang B; Pang DW; Chen J; Liang Y
    J Mol Biol; 2020 Feb; 432(4):828-844. PubMed ID: 31821812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid formation of amyloid from alpha-monomeric recombinant human PrP in vitro.
    Tahiri-Alaoui A; James W
    Protein Sci; 2005 Apr; 14(4):942-7. PubMed ID: 15741327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.