These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28373899)
61. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Ostermeyer AK; Kostigen Mumuper C; Semprini L; Radniecki T Environ Sci Technol; 2013 Dec; 47(24):14403-10. PubMed ID: 24219026 [TBL] [Abstract][Full Text] [Related]
62. Anaerobic toxicity of cationic silver nanoparticles. Gitipour A; Thiel SW; Scheckel KG; Tolaymat T Sci Total Environ; 2016 Jul; 557-558():363-8. PubMed ID: 27016684 [TBL] [Abstract][Full Text] [Related]
64. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802 [TBL] [Abstract][Full Text] [Related]
65. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles. Stoiber T; Croteau MN; Römer I; Tejamaya M; Lead JR; Luoma SN Nanotoxicology; 2015; 9(7):918-27. PubMed ID: 25676617 [TBL] [Abstract][Full Text] [Related]
66. Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash. He D; Ikeda-Ohno A; Boland DD; Waite TD Environ Sci Technol; 2013 May; 47(10):5276-84. PubMed ID: 23614704 [TBL] [Abstract][Full Text] [Related]
67. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. Dang F; Jiang Y; Li M; Zhong H; Peijnenburg WGM; Shi W; Zhou D Environ Pollut; 2018 Dec; 243(Pt A):364-373. PubMed ID: 30199811 [TBL] [Abstract][Full Text] [Related]
68. H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. He D; Garg S; Waite TD Langmuir; 2012 Jul; 28(27):10266-75. PubMed ID: 22616806 [TBL] [Abstract][Full Text] [Related]
69. In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses. Strickland JD; LeFew WR; Crooks J; Hall D; Ortenzio JN; Dreher K; Shafer TJ Toxicology; 2016 Apr; 355-356():1-8. PubMed ID: 27179409 [TBL] [Abstract][Full Text] [Related]
70. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Ho CM; Yau SK; Lok CN; So MH; Che CM Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340 [TBL] [Abstract][Full Text] [Related]
71. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna. Zhang Z; Yang X; Shen M; Yin Y; Liu J J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693 [TBL] [Abstract][Full Text] [Related]
72. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis. Sikder M; Lead JR; Chandler GT; Baalousha M Sci Total Environ; 2018 Mar; 618():597-607. PubMed ID: 28411867 [TBL] [Abstract][Full Text] [Related]
73. Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids. Pinďáková L; Kašpárková V; Kejlová K; Dvořáková M; Krsek D; Jírová D; Kašparová L Int J Pharm; 2017 Jul; 527(1-2):12-20. PubMed ID: 28506800 [TBL] [Abstract][Full Text] [Related]
74. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Reinsch BC; Levard C; Li Z; Ma R; Wise A; Gregory KB; Brown GE; Lowry GV Environ Sci Technol; 2012 Jul; 46(13):6992-7000. PubMed ID: 22296331 [TBL] [Abstract][Full Text] [Related]
75. Single particle ICP-MS as a tool for determining the stability of silver nanoparticles in aquatic matrixes under various environmental conditions, including treatment by ozonation. Telgmann L; Nguyen MT; Shen L; Yargeau V; Hintelmann H; Metcalfe CD Anal Bioanal Chem; 2016 Jul; 408(19):5169-77. PubMed ID: 27311958 [TBL] [Abstract][Full Text] [Related]
76. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Ellis LA; Valsami-Jones E; Lead JR; Baalousha M Sci Total Environ; 2016 Oct; 568():95-106. PubMed ID: 27289392 [TBL] [Abstract][Full Text] [Related]
77. Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter. Xiao B; Wang X; Yang J; Wang K; Zhang Y; Sun B; Zhang T; Zhu L Ecotoxicol Environ Saf; 2020 May; 194():110454. PubMed ID: 32171962 [TBL] [Abstract][Full Text] [Related]
78. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Groh KJ; Dalkvist T; Piccapietra F; Behra R; Suter MJ; Schirmer K Nanotoxicology; 2015 Feb; 9(1):81-91. PubMed ID: 24625062 [TBL] [Abstract][Full Text] [Related]
79. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry. Ramos K; Ramos L; Gómez-Gómez MM Food Chem; 2017 Apr; 221():822-828. PubMed ID: 27979280 [TBL] [Abstract][Full Text] [Related]