These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28374050)
1. Enhanced fed-batch production of pyrroloquinoline quinine in Methylobacillus sp. CCTCC M2016079 with a two-stage pH control strategy. Si Z; Machaku D; Wei P; Huang L; Cai J; Xu Z Appl Microbiol Biotechnol; 2017 Jun; 101(12):4915-4922. PubMed ID: 28374050 [TBL] [Abstract][Full Text] [Related]
2. Novel and efficient screening of PQQ high-yielding strains and subsequent cultivation optimization. Si Z; Zhu J; Wang W; Huang L; Wei P; Cai J; Xu Z Appl Microbiol Biotechnol; 2016 Dec; 100(24):10321-10330. PubMed ID: 27464830 [TBL] [Abstract][Full Text] [Related]
3. Two-stage oxygen supply strategy for enhancing fed-batch production of pyrroloquinoline quinone in Hyphomicrobium denitrificans FJNU-6. Liu M; Yang X; Ren Y; Xia H; Huang J; Ke C Appl Microbiol Biotechnol; 2020 Aug; 104(15):6615-6622. PubMed ID: 32529378 [TBL] [Abstract][Full Text] [Related]
4. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm. Wei P; Si Z; Lu Y; Yu Q; Huang L; Xu Z Prep Biochem Biotechnol; 2017 Aug; 47(7):709-719. PubMed ID: 28448745 [TBL] [Abstract][Full Text] [Related]
5. Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy. Li X; Lin Y; Chang M; Jin Q; Wang X Bioresour Technol; 2015 Apr; 181():275-82. PubMed ID: 25661306 [TBL] [Abstract][Full Text] [Related]
6. Oxidative stress resistance prompts pyrroloquinoline quinone biosynthesis in Hyphomicrobium denitrificans H4-45. Liang J; Tang M; Chen L; Wang W; Liang X Appl Microbiol Biotechnol; 2024 Feb; 108(1):204. PubMed ID: 38349428 [TBL] [Abstract][Full Text] [Related]
7. Kinetic analysis and pH-shift control strategy for propionic acid production with Propionibacterium Freudenreichii CCTCC M207015. Feng X; Xu H; Yao J; Li S; Zhu H; Ouyang P Appl Biochem Biotechnol; 2010 Jan; 160(2):343-9. PubMed ID: 18626579 [TBL] [Abstract][Full Text] [Related]
8. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae. Fu Y; Sun X; Zhu H; Jiang R; Luo X; Yin L World J Microbiol Biotechnol; 2018 May; 34(6):74. PubMed ID: 29786118 [TBL] [Abstract][Full Text] [Related]
9. Improved propionic acid production from glycerol with metabolically engineered Propionibacterium jensenii by integrating fed-batch culture with a pH-shift control strategy. Zhuge X; Liu L; Shin HD; Li J; Du G; Chen J Bioresour Technol; 2014; 152():519-25. PubMed ID: 24333145 [TBL] [Abstract][Full Text] [Related]
10. [Establishment of the screening method and isolation of PQQ producing strains]. Wang X; Wang JH; Liu DS; Zhang WC Wei Sheng Wu Xue Bao; 2007 Dec; 47(6):982-6. PubMed ID: 18271250 [TBL] [Abstract][Full Text] [Related]
11. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Philip P; Kern D; Goldmanns J; Seiler F; Schulte A; Habicher T; Büchs J Microb Cell Fact; 2018 May; 17(1):69. PubMed ID: 29743073 [TBL] [Abstract][Full Text] [Related]
12. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates. Costas Malvido M; Alonso González E; Pérez Guerra N Appl Microbiol Biotechnol; 2016 Sep; 100(18):7899-908. PubMed ID: 27112347 [TBL] [Abstract][Full Text] [Related]
13. [Characterization and evaluation of an astaxanthin over-producing Phaffia rhodozyma]. Ni H; Hong Q; Xiao A; Li L; Cai H; Su W Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1065-75. PubMed ID: 22016991 [TBL] [Abstract][Full Text] [Related]
14. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P; Nguyen NH Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940 [TBL] [Abstract][Full Text] [Related]
15. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy. Zhu BF; Xu Y J Ind Microbiol Biotechnol; 2010 Aug; 37(8):815-21. PubMed ID: 20437078 [TBL] [Abstract][Full Text] [Related]
16. Adaptive evolutionary strategy coupled with an optimized biosynthesis process for the efficient production of pyrroloquinoline quinone from methanol. Ren Y; Yang X; Ding L; Liu D; Tao Y; Huang J; Ke C Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):11. PubMed ID: 36658601 [TBL] [Abstract][Full Text] [Related]
17. Production of ε-poly-L: -lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Chen XS; Li S; Liao LJ; Ren XD; Li F; Tang L; Zhang JH; Mao ZG Bioprocess Biosyst Eng; 2011 Jun; 34(5):561-7. PubMed ID: 21212985 [TBL] [Abstract][Full Text] [Related]
18. Efficient production of ε-poly-L-lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding. Liu SR; Wu QP; Zhang JM; Mo SP J Microbiol Biotechnol; 2015 Mar; 25(3):358-65. PubMed ID: 25269813 [TBL] [Abstract][Full Text] [Related]
19. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous. Xie D; Miller E; Sharpe P; Jackson E; Zhu Q Biotechnol Bioeng; 2017 Apr; 114(4):798-812. PubMed ID: 27861744 [TBL] [Abstract][Full Text] [Related]
20. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Zhu L; Yang X; Xue C; Chen Y; Qu L; Lu W Bioresour Technol; 2012 Aug; 117():208-13. PubMed ID: 22613897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]