BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28374083)

  • 21. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of the effective yield properties of human trabecular bone using nonlinear micro-finite element analyses.
    Wili P; Maquer G; Panyasantisuk J; Zysset PK
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1925-1936. PubMed ID: 28643141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone.
    Rho JY
    Ultrasonics; 1996 Dec; 34(8):777-83. PubMed ID: 9010460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Errors induced by off-axis measurement of the elastic properties of bone.
    Turner CH; Cowin SC
    J Biomech Eng; 1988 Aug; 110(3):213-5. PubMed ID: 3172741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of thermodisinfection on mechanic parameters of cancellous bone.
    Fölsch C; Kellotat A; Rickert M; Ishaque B; Ahmed G; Pruss A; Jahnke A
    Cell Tissue Bank; 2016 Sep; 17(3):427-37. PubMed ID: 27344440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur.
    Perilli E; Baleani M; Ohman C; Fognani R; Baruffaldi F; Viceconti M
    J Biomech; 2008; 41(2):438-46. PubMed ID: 17949726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime.
    Prot M; Cloete TJ; Saletti D; Laporte S
    J Biomech; 2016 May; 49(7):1050-1057. PubMed ID: 26970887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional microarchitecture of adolescent cancellous bone.
    Ding M; Danielsen CC; Hvid I; Overgaard S
    Bone; 2012 Nov; 51(5):953-60. PubMed ID: 22884723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimizing specimen length in elastic testing of end-constrained cancellous bone.
    Lievers WB; Waldman SD; Pilkey AK
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):22-30. PubMed ID: 19878899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone.
    Manda K; Xie S; Wallace RJ; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1631-1640. PubMed ID: 27090522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The speed of sound through trabecular bone predicted by Biot theory.
    Yoon YJ; Chung JP; Bae CS; Han SY
    J Biomech; 2012 Feb; 45(4):716-8. PubMed ID: 22244093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing.
    Nazarian A; Meier D; Müller R; Snyder BD
    J Orthop Res; 2009 Dec; 27(12):1667-74. PubMed ID: 19572408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 3D trabecular bone homogenization technique.
    Marques MC; Belinha J; Oliveira AF; Cespedes MCM; Jorge RMN
    Acta Bioeng Biomech; 2020; 22(3):139-152. PubMed ID: 33518727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of the Defatting Efficacy of Mechanical and Chemical Treatment for Allograft Cancellous Bone and Its Effects on Biomechanics Properties of Bone.
    Hua KC; Feng JT; Yang XG; Wang F; Zhang H; Yang L; Zhang HR; Xu MY; Li JK; Qiao RQ; Lun DX; Hu YC
    Orthop Surg; 2020 Apr; 12(2):617-630. PubMed ID: 32189444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties of femoral trabecular bone in dogs.
    Pressel T; Bouguecha A; Vogt U; Meyer-Lindenberg A; Behrens BA; Nolte I; Windhagen H
    Biomed Eng Online; 2005 Mar; 4():17. PubMed ID: 15774014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties.
    Li ZC; Dai LY; Jiang LS; Qiu S
    Arthritis Rheum; 2012 Dec; 64(12):3955-62. PubMed ID: 23124609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.