These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28374083)

  • 41. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elastography of the bone-implant interface.
    Hériveaux Y; Nguyen VH; Geiger D; Haïat G
    Sci Rep; 2019 Oct; 9(1):14163. PubMed ID: 31578440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.
    Maquer G; Musy SN; Wandel J; Gross T; Zysset PK
    J Bone Miner Res; 2015 Jun; 30(6):1000-8. PubMed ID: 25529534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.
    Song K; Li L; Yan X; Zhang Y; Li R; Wang Y; Wang L; Wang H; Liu T
    J Mater Sci Mater Med; 2016 Jun; 27(6):114. PubMed ID: 27180235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations.
    Gross T; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2013 Aug; 12(4):793-800. PubMed ID: 23053593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiphysics of bone remodeling: A 2D mesoscale activation simulation.
    Spingarn C; Wagner D; Rémond Y; George D
    Biomed Mater Eng; 2017; 28(s1):S153-S158. PubMed ID: 28372290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The anisotropic Hooke's law for cancellous bone and wood.
    Yang G; Kabel J; van Rietbergen B; Odgaard A; Huiskes R; Cowin SC
    J Elast; 1998-9; 53(2):125-46. PubMed ID: 11543211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Specimen diameter and "side artifacts" in cancellous bone evaluated using end-constrained elastic tension.
    Lievers WB; Petryshyn AC; Poljsak AS; Waldman SD; Pilkey AK
    Bone; 2010 Aug; 47(2):371-7. PubMed ID: 20380901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of trabecular bone storage method on its elastic properties.
    Mazurkiewicz A
    Acta Bioeng Biomech; 2018; 20(1):21-27. PubMed ID: 29658529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Could the intraosseous fluid in cancellous bone bear external load significantly within the elastic range?
    Hwa HJ
    Proc Inst Mech Eng H; 2004; 218(6):375-9. PubMed ID: 15648661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlinear homogenisation of trabecular bone: Effect of solid phase constitutive model.
    Levrero-Florencio F; Manda K; Margetts L; Pankaj P
    Proc Inst Mech Eng H; 2017 May; 231(5):405-414. PubMed ID: 28427317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
    Moreno R; Smedby Ö; Pahr DH
    Biomech Model Mechanobiol; 2016 Aug; 15(4):831-44. PubMed ID: 26341838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.
    Gilbert RP; Guyenne P; Li J
    Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of end boundary conditions and specimen geometry on the viscoelastic properties of cancellous bone measured by dynamic mechanical analysis.
    Dong XN; Yeni YN; Les CM; Fyhrie DP
    J Biomed Mater Res A; 2004 Mar; 68(3):573-83. PubMed ID: 14762938
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The contribution of cancellous bone to long bone strength and rigidity.
    Ruff CB
    Am J Phys Anthropol; 1983 Jun; 61(2):141-3. PubMed ID: 6881316
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants.
    Yoon YJ; Yang G; Cowin SC
    Biomech Model Mechanobiol; 2002 Jun; 1(1):83-93. PubMed ID: 14586709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of mechanical properties of the cancellous bone of the mandibular condyle.
    van Ruijven LJ; Giesen EB; Farella M; van Eijden TM
    J Dent Res; 2003 Oct; 82(10):819-23. PubMed ID: 14514763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.