These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28374149)

  • 1. Multiple origins of embryonic and tadpole myeloid cells in Xenopus laevis.
    Imai Y; Ishida K; Nemoto M; Nakata K; Kato T; Maéno M
    Cell Tissue Res; 2017 Aug; 369(2):341-352. PubMed ID: 28374149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny and tissue distribution of leukocyte-common antigen bearing cells during early development of Xenopus laevis.
    Ohinata H; Tochinai S; Katagiri C
    Development; 1989 Nov; 107(3):445-52. PubMed ID: 2533066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of nonlymphoid leukocytes that are not derived from blood islands in Xenopus laevis larvae.
    Ohinata H; Tochinai S; Katagiri C
    Dev Biol; 1990 Sep; 141(1):123-9. PubMed ID: 2202604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A myeloperoxidase enhancer drives myeloid cell-specific labeling in a transgenic frog line.
    Yamada-Kondo S; Ogawa A; Fukunaga M; Izutsu Y; Kato T; Maéno M
    Dev Growth Differ; 2022 Sep; 64(7):362-367. PubMed ID: 36054448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of myeloid cells localized in the tadpole liver cortex in Xenopus laevis.
    Maéno M; Tanabe M; Ogawa A; Kobayashi H; Izutsu Y; Kato T
    Dev Comp Immunol; 2024 Jul; 156():105178. PubMed ID: 38599553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeling primitive myeloid progenitor cells in Xenopus.
    Costa R; Chen Y; Paredes R; Amaya E
    Methods Mol Biol; 2012; 916():141-55. PubMed ID: 22914938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of blood cells in Xenopus embryo explants.
    Miyanaga Y; Shiurba R; Nagata S; Pfeiffer CJ; Asashima M
    Dev Genes Evol; 1998 Jan; 207(7):417-26. PubMed ID: 9510536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis.
    Kau CL; Turpen JB
    J Immunol; 1983 Nov; 131(5):2262-6. PubMed ID: 6605382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo.
    Tashiro S; Sedohara A; Asashima M; Izutsu Y; Maéno M
    Dev Growth Differ; 2006 Oct; 48(8):499-512. PubMed ID: 17026714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraembryonic origin of hepatic hematopoiesis in Xenopus laevis.
    Chen XD; Turpen JB
    J Immunol; 1995 Mar; 154(6):2557-67. PubMed ID: 7876532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larval-to-adult conversion of a myogenic system in the frog, Xenopus laevis, by larval-type myoblast-specific control of cell division, cell differentiation, and programmed cell death by triiodo-L-thyronine.
    Shibota Y; Kaneko Y; Kuroda M; Nishikawa A
    Differentiation; 2000 Dec; 66(4-5):227-38. PubMed ID: 11269949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult-type splenocytes of Xenopus induce apoptosis of histocompatible larval tail cells in vitro.
    Izutsu Y; Yoshizato K; Tochinai S
    Differentiation; 1996 Sep; 60(5):277-86. PubMed ID: 8855371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras.
    Maéno M; Tochinai S; Katagiri C
    Dev Biol; 1985 Aug; 110(2):503-8. PubMed ID: 4018411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. spib is required for primitive myeloid development in Xenopus.
    Costa RM; Soto X; Chen Y; Zorn AM; Amaya E
    Blood; 2008 Sep; 112(6):2287-96. PubMed ID: 18594023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo.
    Moepps B; Braun M; Knöpfle K; Dillinger K; Knöchel W; Gierschik P
    Eur J Immunol; 2000 Oct; 30(10):2924-34. PubMed ID: 11069075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A monoclonal antibody specific for an epidermal cell antigen of Xenopus laevis: electron microscopic observations using a gold-labeling method.
    Asada-Kubota M
    J Histochem Cytochem; 1988 May; 36(5):515-21. PubMed ID: 3356895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis.
    Shibata T; Takahashi Y; Tasaki J; Saito Y; Izutsu Y; Maéno M
    Mech Dev; 2008; 125(3-4):284-98. PubMed ID: 18093808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloperoxidase: its structure and expression during myeloid differentiation.
    Koeffler HP; Ranyard J; Pertcheck M
    Blood; 1985 Feb; 65(2):484-91. PubMed ID: 2981591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis.
    Godsave SF; Anderton BH; Wylie CC
    J Embryol Exp Morphol; 1986 Sep; 97():201-23. PubMed ID: 2432146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.