BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28374149)

  • 1. Multiple origins of embryonic and tadpole myeloid cells in Xenopus laevis.
    Imai Y; Ishida K; Nemoto M; Nakata K; Kato T; Maéno M
    Cell Tissue Res; 2017 Aug; 369(2):341-352. PubMed ID: 28374149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny and tissue distribution of leukocyte-common antigen bearing cells during early development of Xenopus laevis.
    Ohinata H; Tochinai S; Katagiri C
    Development; 1989 Nov; 107(3):445-52. PubMed ID: 2533066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of nonlymphoid leukocytes that are not derived from blood islands in Xenopus laevis larvae.
    Ohinata H; Tochinai S; Katagiri C
    Dev Biol; 1990 Sep; 141(1):123-9. PubMed ID: 2202604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A myeloperoxidase enhancer drives myeloid cell-specific labeling in a transgenic frog line.
    Yamada-Kondo S; Ogawa A; Fukunaga M; Izutsu Y; Kato T; Maéno M
    Dev Growth Differ; 2022 Sep; 64(7):362-367. PubMed ID: 36054448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of myeloid cells localized in the tadpole liver cortex in Xenopus laevis.
    Maéno M; Tanabe M; Ogawa A; Kobayashi H; Izutsu Y; Kato T
    Dev Comp Immunol; 2024 Jul; 156():105178. PubMed ID: 38599553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeling primitive myeloid progenitor cells in Xenopus.
    Costa R; Chen Y; Paredes R; Amaya E
    Methods Mol Biol; 2012; 916():141-55. PubMed ID: 22914938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of blood cells in Xenopus embryo explants.
    Miyanaga Y; Shiurba R; Nagata S; Pfeiffer CJ; Asashima M
    Dev Genes Evol; 1998 Jan; 207(7):417-26. PubMed ID: 9510536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis.
    Kau CL; Turpen JB
    J Immunol; 1983 Nov; 131(5):2262-6. PubMed ID: 6605382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo.
    Tashiro S; Sedohara A; Asashima M; Izutsu Y; Maéno M
    Dev Growth Differ; 2006 Oct; 48(8):499-512. PubMed ID: 17026714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraembryonic origin of hepatic hematopoiesis in Xenopus laevis.
    Chen XD; Turpen JB
    J Immunol; 1995 Mar; 154(6):2557-67. PubMed ID: 7876532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larval-to-adult conversion of a myogenic system in the frog, Xenopus laevis, by larval-type myoblast-specific control of cell division, cell differentiation, and programmed cell death by triiodo-L-thyronine.
    Shibota Y; Kaneko Y; Kuroda M; Nishikawa A
    Differentiation; 2000 Dec; 66(4-5):227-38. PubMed ID: 11269949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult-type splenocytes of Xenopus induce apoptosis of histocompatible larval tail cells in vitro.
    Izutsu Y; Yoshizato K; Tochinai S
    Differentiation; 1996 Sep; 60(5):277-86. PubMed ID: 8855371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras.
    Maéno M; Tochinai S; Katagiri C
    Dev Biol; 1985 Aug; 110(2):503-8. PubMed ID: 4018411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. spib is required for primitive myeloid development in Xenopus.
    Costa RM; Soto X; Chen Y; Zorn AM; Amaya E
    Blood; 2008 Sep; 112(6):2287-96. PubMed ID: 18594023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo.
    Moepps B; Braun M; Knöpfle K; Dillinger K; Knöchel W; Gierschik P
    Eur J Immunol; 2000 Oct; 30(10):2924-34. PubMed ID: 11069075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A monoclonal antibody specific for an epidermal cell antigen of Xenopus laevis: electron microscopic observations using a gold-labeling method.
    Asada-Kubota M
    J Histochem Cytochem; 1988 May; 36(5):515-21. PubMed ID: 3356895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis.
    Shibata T; Takahashi Y; Tasaki J; Saito Y; Izutsu Y; Maéno M
    Mech Dev; 2008; 125(3-4):284-98. PubMed ID: 18093808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloperoxidase: its structure and expression during myeloid differentiation.
    Koeffler HP; Ranyard J; Pertcheck M
    Blood; 1985 Feb; 65(2):484-91. PubMed ID: 2981591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis.
    Godsave SF; Anderton BH; Wylie CC
    J Embryol Exp Morphol; 1986 Sep; 97():201-23. PubMed ID: 2432146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.