BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 28374277)

  • 1. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic gut-on-a-chip with three-dimensional villi structure.
    Shim KY; Lee D; Han J; Nguyen NT; Park S; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):37. PubMed ID: 28451924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.
    Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ
    PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bioprinted Liver-on-a-Chip for Drug Screening Applications.
    Knowlton S; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of a skin-on-a-chip pumpless microfluidic device.
    Mohamadali M; Ghiaseddin A; Irani S; Amirkhani MA; Dahmardehei M
    Sci Rep; 2023 May; 13(1):8861. PubMed ID: 37258538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications.
    Lee SH; Shim KY; Kim B; Sung JH
    Biotechnol Prog; 2017 May; 33(3):580-589. PubMed ID: 28247962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Placenta-on-a-chip: a novel platform to study the biology of the human placenta.
    Lee JS; Romero R; Han YM; Kim HC; Kim CJ; Hong JS; Huh D
    J Matern Fetal Neonatal Med; 2016; 29(7):1046-54. PubMed ID: 26075842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of Hepatic Tissue Structures Using Interstitial Flow in a Microfluidic Device.
    Sudo R
    Methods Mol Biol; 2019; 1905():167-174. PubMed ID: 30536099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.
    Cassereau L; Miroshnikova YA; Ou G; Lakins J; Weaver VM
    J Biotechnol; 2015 Jan; 193():66-9. PubMed ID: 25435379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment.
    Hsieh HY; Camci-Unal G; Huang TW; Liao R; Chen TJ; Paul A; Tseng FG; Khademhosseini A
    Lab Chip; 2014 Feb; 14(3):482-93. PubMed ID: 24253194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of α-Lipoic Acid on the Development of Human Skin Equivalents Using a Pumpless Skin-on-a-Chip Model.
    Kim K; Kim J; Kim H; Sung GY
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue.
    Kwak BS; Jin SP; Kim SJ; Kim EJ; Chung JH; Sung JH
    Biotechnol Bioeng; 2020 Jun; 117(6):1853-1863. PubMed ID: 32100875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel-coated microfluidic channels for cardiomyocyte culture.
    Annabi N; Selimović Š; Acevedo Cox JP; Ribas J; Afshar Bakooshli M; Heintze D; Weiss AS; Cropek D; Khademhosseini A
    Lab Chip; 2013 Sep; 13(18):3569-77. PubMed ID: 23728018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells.
    Xu H; Wu J; Chu CC; Shuler ML
    Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.