These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 28374283)

  • 21. Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities.
    Uma VS; Usmani Z; Sharma M; Diwan D; Sharma M; Guo M; Tuohy MG; Makatsoris C; Zhao X; Thakur VK; Gupta VK
    Phytochem Rev; 2022 Mar; ():1-26. PubMed ID: 35250414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biorefinery: Toward an industrial metabolism.
    Octave S; Thomas D
    Biochimie; 2009 Jun; 91(6):659-64. PubMed ID: 19332104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.
    Banerjee J; Singh R; Vijayaraghavan R; MacFarlane D; Patti AF; Arora A
    Food Chem; 2017 Jun; 225():10-22. PubMed ID: 28193402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Waste-to-nutrition: a review of current and emerging conversion pathways.
    Javourez U; O'Donohue M; Hamelin L
    Biotechnol Adv; 2021 Dec; 53():107857. PubMed ID: 34699952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016 - Till date).
    Mishra S; Kharkar PS; Pethe AM
    Carbohydr Polym; 2019 Mar; 207():418-427. PubMed ID: 30600024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sugarcane-Biorefinery.
    Vaz S
    Adv Biochem Eng Biotechnol; 2019; 166():125-136. PubMed ID: 28303295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Waste valorization by biotechnological conversion into added value products.
    Liguori R; Amore A; Faraco V
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6129-47. PubMed ID: 23749120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mild Chemical Treatment of Unsorted Urban Food Wastes.
    Padoan E; Montoneri E; Baglieri A; Francavilla M; Negre M
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potentials of macroalgae as feedstocks for biorefinery.
    Jung KA; Lim SR; Kim Y; Park JM
    Bioresour Technol; 2013 May; 135():182-90. PubMed ID: 23186669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach.
    Lucarini M; Durazzo A; Romani A; Campo M; Lombardi-Boccia G; Cecchini F
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30060557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy.
    Karpagam R; Jawaharraj K; Gnanam R
    Sci Total Environ; 2021 Apr; 766():144236. PubMed ID: 33422843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of biofuels and biomolecules in the framework of circular economy: A regional case study.
    Jacquet N; Haubruge E; Richel A
    Waste Manag Res; 2015 Dec; 33(12):1121-6. PubMed ID: 26574581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated biorefinery strategy for the utilization of palm-oil wastes.
    Kahar P; Rachmadona N; Pangestu R; Palar R; Triyono Nugroho Adi D; Betha Juanssilfero A; Yopi ; Manurung I; Hama S; Ogino C
    Bioresour Technol; 2022 Jan; 344(Pt B):126266. PubMed ID: 34740797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Waste derived bioeconomy in India: A perspective.
    S VM; P C; Dahiya S; A NK
    N Biotechnol; 2018 Jan; 40(Pt A):60-69. PubMed ID: 28676418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges.
    Singh S; Pandey D; Saravanabhupathy S; Daverey A; Dutta K; Arunachalam K
    Environ Res; 2022 May; 207():112100. PubMed ID: 34619127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks.
    Yang Z; Leero DD; Yin C; Yang L; Zhu L; Zhu Z; Jiang L
    Bioresour Technol; 2022 Oct; 361():127656. PubMed ID: 35872277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Land-use and alternative bioenergy pathways for waste biomass.
    Campbell JE; Block E
    Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective hydrolysis for waste plant biomass impacts sustainable fuel and reduced air pollution generation: A comprehensive review.
    Srivastava RK; Nedungadi SV; Akhtar N; Sarangi PK; Subudhi S; Shadangi KP; Govarthanan M
    Sci Total Environ; 2023 Feb; 859(Pt 2):160260. PubMed ID: 36400296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering a more sustainable world through catalysis and green chemistry.
    Sheldon RA
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27009181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.