These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28374591)

  • 1. Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids.
    Mayans E; Casanovas J; Gil AM; Jiménez AI; Cativiela C; Puiggalí J; Alemán C
    Langmuir; 2017 Apr; 33(16):4036-4048. PubMed ID: 28374591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups.
    Pérez-Madrigal MM; Gil AM; Casanovas J; Jiménez AI; Macor LP; Alemán C
    Colloids Surf B Biointerfaces; 2022 Aug; 216():112522. PubMed ID: 35561635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical self-assembly of di-, tri- and tetraphenylalanine peptides capped with two fluorenyl functionalities: from polymorphs to dendrites.
    Mayans E; Ballano G; Casanovas J; Del Valle LJ; Pérez-Madrigal MM; Estrany F; Jiménez AI; Puiggalí J; Cativiela C; Alemán C
    Soft Matter; 2016 Jun; 12(24):5475-88. PubMed ID: 27220532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly: Nanostructures and Molecular Mechanisms.
    Guo C; Arnon ZA; Qi R; Zhang Q; Adler-Abramovich L; Gazit E; Wei G
    ACS Nano; 2016 Sep; 10(9):8316-24. PubMed ID: 27548765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of diphenylalanine with preclick components as capping groups.
    Gemma A; Mayans E; Ballano G; Torras J; Díaz A; Jiménez AI; Puiggalí J; Cativiela C; Alemán C
    Phys Chem Chem Phys; 2017 Oct; 19(39):27038-27051. PubMed ID: 28959820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.
    Ni XL; Xiao X; Cong H; Zhu QJ; Xue SF; Tao Z
    Acc Chem Res; 2014 Apr; 47(4):1386-95. PubMed ID: 24673124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly of Tetraphenylalanine Peptides.
    Mayans E; Ballano G; Casanovas J; Díaz A; Pérez-Madrigal MM; Estrany F; Puiggalí J; Cativiela C; Alemán C
    Chemistry; 2015 Nov; 21(47):16895-905. PubMed ID: 26419936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole-Dipole Interaction Driven Self-Assembly of Merocyanine Dyes: From Dimers to Nanoscale Objects and Supramolecular Materials.
    Würthner F
    Acc Chem Res; 2016 May; 49(5):868-76. PubMed ID: 27064423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Multiblock Copolymers Featuring Complex Secondary Structures.
    Elacqua E; Manning KB; Lye DS; Pomarico SK; Morgia F; Weck M
    J Am Chem Soc; 2017 Sep; 139(35):12240-12250. PubMed ID: 28832143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and gelation behavior of tris(phenylisoxazolyl)benzenes.
    Tanaka M; Ikeda T; Mack J; Kobayashi N; Haino T
    J Org Chem; 2011 Jun; 76(12):5082-91. PubMed ID: 21563805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation Preservation of α-Helical Peptides within Supramolecular Filamentous Assemblies.
    Li Y; Wang Y; Ou SH; Lock LL; Xu X; Ghose S; Li ZJ; Cui H
    Biomacromolecules; 2017 Nov; 18(11):3611-3620. PubMed ID: 28891286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the tetraphenylalanine-PEG hybrid amphiphile: from DFT calculations on the peptide to molecular dynamics simulations on the conjugate.
    Zanuy D; Hamley IW; Alemán C
    J Phys Chem B; 2011 Jul; 115(28):8937-46. PubMed ID: 21671568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-tunable morphology and emission of pyrene-dipeptide organogels.
    Bartocci S; Morbioli I; Maggini M; Mba M
    J Pept Sci; 2015 Dec; 21(12):871-8. PubMed ID: 26767742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of amylin(20-29) amide-bond derivatives into helical ribbons and peptide nanotubes rather than fibrils.
    Elgersma RC; Meijneke T; Posthuma G; Rijkers DT; Liskamp RM
    Chemistry; 2006 May; 12(14):3714-25. PubMed ID: 16528792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sheet-like assemblies of charged amphiphilic α/β-peptides at the air-water interface.
    Segman-Magidovich S; Lee MR; Vaiser V; Struth B; Gellman SH; Rapaport H
    Chemistry; 2011 Dec; 17(52):14857-66. PubMed ID: 22105992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.