These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28374773)

  • 1. Nucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions.
    Kumawat A; Chakrabarty S; Kulkarni K
    Sci Rep; 2017 Apr; 7():45829. PubMed ID: 28374773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of an inactive conformation of GTP-bound RhoA GTPase.
    Lin Y; Lu S; Zhang J; Zheng Y
    Structure; 2021 Jun; 29(6):553-563.e5. PubMed ID: 33497604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray crystal structures reveal two activated states for RhoC.
    Dias SM; Cerione RA
    Biochemistry; 2007 Jun; 46(22):6547-58. PubMed ID: 17497936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational selection through electrostatics: Free energy simulations of GTP and GDP binding to archaeal initiation factor 2.
    Satpati P; Simonson T
    Proteins; 2012 May; 80(5):1264-82. PubMed ID: 22275120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide recognition by the initiation factor aIF5B: free energy simulations of a neoclassical GTPase.
    Simonson T; Satpati P
    Proteins; 2012 Dec; 80(12):2742-57. PubMed ID: 22887821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol for structural and biochemical analyses of RhoA GTPase.
    Lin Y; Watanabe-Chailland M; Zheng Y
    STAR Protoc; 2021 Jun; 2(2):100541. PubMed ID: 34036285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active and Inactive Cdc42 Differ in Their Insert Region Conformational Dynamics.
    Haspel N; Jang H; Nussinov R
    Biophys J; 2021 Jan; 120(2):306-318. PubMed ID: 33347888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic free energies in translational GTPases: Classic allostery and the rest.
    Simonson T; Aleksandrov A; Satpati P
    Biochim Biophys Acta; 2015 May; 1850(5):1006-1016. PubMed ID: 25047891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide binding switches the information flow in ras GTPases.
    Raimondi F; Portella G; Orozco M; Fanelli F
    PLoS Comput Biol; 2011 Mar; 7(3):e1001098. PubMed ID: 21390270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of GTP/GDP and magnesium ion on the solvated structure of the protein FtsZ: a molecular dynamics study.
    Jamous C; Basdevant N; Ha-Duong T
    J Biomol Struct Dyn; 2014; 32(6):916-27. PubMed ID: 23782014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of pathways for the conformational transition between the GTP- and GDP-bound states of the Ha-ras-p21 protein: calculations with explicit solvent simulations and comparison with calculations in vacuum.
    Diaz JF; Wroblowski B; Schlitter J; Engelborghs Y
    Proteins; 1997 Jul; 28(3):434-51. PubMed ID: 9223188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-state targeting machinery govern the fidelity and efficiency of protein localization.
    Yang M; Pang X; Han K
    Adv Exp Med Biol; 2014; 805():385-409. PubMed ID: 24446370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of M-Ras reveals a GTP-bound "off" state conformation of Ras family small GTPases.
    Ye M; Shima F; Muraoka S; Liao J; Okamoto H; Yamamoto M; Tamura A; Yagi N; Ueki T; Kataoka T
    J Biol Chem; 2005 Sep; 280(35):31267-75. PubMed ID: 15994326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI.
    Golovanov AP; Chuang TH; DerMardirossian C; Barsukov I; Hawkins D; Badii R; Bokoch GM; Lian LY; Roberts GC
    J Mol Biol; 2001 Jan; 305(1):121-35. PubMed ID: 11114252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cofactor dependent conformational switching of GTPases.
    Hauryliuk V; Hansson S; Ehrenberg M
    Biophys J; 2008 Aug; 95(4):1704-15. PubMed ID: 18502805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the conformational flexibility of monomeric FtsZ in GTP-bound, GDP-bound, and nucleotide-free states.
    Natarajan K; Senapati S
    Biochemistry; 2013 May; 52(20):3543-51. PubMed ID: 23617789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The three-dimensional model of Dictyostelium discoideum racE based on the human rhoA-GDP crystal structure.
    Agarwal M; Nelson DJ; Larochelle DA
    J Mol Graph Model; 2002 Aug; 21(1):3-18. PubMed ID: 12413026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2.
    Satpati P; Clavaguéra C; Ohanessian G; Simonson T
    J Phys Chem B; 2011 May; 115(20):6749-63. PubMed ID: 21534562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential dynamics of RAS isoforms in GDP- and GTP-bound states.
    Kapoor A; Travesset A
    Proteins; 2015 Jun; 83(6):1091-106. PubMed ID: 25846136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.