BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28374831)

  • 41. Application of an immune-magnetic cell sorting method for CD138-positive plasma cells in FISH analysis of multiple myeloma.
    Shin SY; Jang S; Park CJ; Chi HS; Lee JH; Lee JH; Lee KH; Suh C; Lim SE; Seo EJ
    Int J Lab Hematol; 2012 Oct; 34(5):541-6. PubMed ID: 22672327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metastatic hepatocellular carcinoma with CD138 positivity: an unusual mimic of multiple myeloma?
    Ramalingam P; Adeagbo B; Bollag R; Lee J; Reid-Nicholson M
    Diagn Cytopathol; 2008 Oct; 36(10):742-8. PubMed ID: 18773447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Macrophage Inhibitory Factor-1 (MIF-1) controls the plasticity of multiple myeloma tumor cells.
    Joseph D; Gonsky JP; Blain SW
    PLoS One; 2018; 13(11):e0206368. PubMed ID: 30383785
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasma cell myeloma with histiocyte-like morphology.
    Zhu J; Pan B; Yao J; Guo W
    Int J Hematol; 2017 Sep; 106(3):307-309. PubMed ID: 28555415
    [No Abstract]   [Full Text] [Related]  

  • 45. Plasma cell quantification in bone marrow by computer-assisted image analysis.
    Went P; Mayer S; Oberholzer M; Dirnhofer S
    Histol Histopathol; 2006 Sep; 21(9):951-6. PubMed ID: 16763944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination.
    Akhmetzyanova I; McCarron MJ; Parekh S; Chesi M; Bergsagel PL; Fooksman DR
    Leukemia; 2020 Jan; 34(1):245-256. PubMed ID: 31439945
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic enrichment of plasma cells improves treatment of multiple myeloma.
    Zeng Y; Gao L; Luo X; Chen Y; Kabeer MH; Chen X; Stucky A; Loudon WG; Li SC; Zhang X; Zhong JF
    Mol Oncol; 2018 Jun; 12(7):1004-1011. PubMed ID: 29638042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atypical Localization of Malignant Plasma Cells in Non-Viable Cell Area on Flow Cytometry Light-Scatter Dot Plot.
    Juranovic T; Harvey G; Johnson J; Zhang D; Plata MJ; Estalilla OC; Jelic TM
    Am J Case Rep; 2018 Aug; 19():1019-1024. PubMed ID: 30146632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic Device for On-Chip Immunophenotyping and Cytogenetic Analysis of Rare Biological Cells.
    M Weerakoon-Ratnayake K; Vaidyanathan S; Larky N; Dathathreya K; Hu M; Jose J; Mog S; August K; K Godwin A; L Hupert M; A Witek M; A Soper S
    Cells; 2020 Feb; 9(2):. PubMed ID: 32102446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A subpopulation of malignant CD34+CD138+B7-H1+ plasma cells is present in multiple myeloma patients.
    Kuranda K; Berthon C; Dupont C; Wolowiec D; Leleu X; Polakowska R; Jouy N; Quesnel B
    Exp Hematol; 2010 Feb; 38(2):124-31. PubMed ID: 19948206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance.
    Chen R; Zhao H; Wu D; Zhao C; Zhao W; Zhou X
    Oncotarget; 2016 Nov; 7(45):73101-73113. PubMed ID: 27683032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasma cell myeloma mimicking classical Hodgkin lymphoma in the bone marrow.
    Karner KH; Inamdar KV
    Int J Hematol; 2018 Feb; 107(2):127-128. PubMed ID: 29027630
    [No Abstract]   [Full Text] [Related]  

  • 53. Evaluation of multiple myeloma cell apoptosis in primary bone marrow samples.
    Rebersek K; Cernelc P; Podgornik H
    Clin Lab; 2013; 59(3-4):389-95. PubMed ID: 23724630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The evaluation of minimal residual disease in multiple myeloma by fluorescent molecular beacons in real time PCR of IgH gene rearrangements and correlation with flow cytometry.
    Kara IO; Duman BB; Afsar CU
    J BUON; 2013; 18(2):442-7. PubMed ID: 23818359
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of circulating normal and tumor plasma cells in newly diagnosed patients of multiple myeloma and their associations with clinical and laboratory parameters.
    Gupta L; Suku P; Dash A; Bose P; Sharma P; Mallik N; Sreedharanunni S; Varma N; Jandial A; Malhotra P; Sachdeva MUS
    Curr Probl Cancer; 2024 Feb; 48():101025. PubMed ID: 37951052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Syndecan-1 (CD138) Suppresses Apoptosis in Multiple Myeloma by Activating IGF1 Receptor: Prevention by SynstatinIGF1R Inhibits Tumor Growth.
    Beauvais DM; Jung O; Yang Y; Sanderson RD; Rapraeger AC
    Cancer Res; 2016 Sep; 76(17):4981-93. PubMed ID: 27364558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sample processing and methodological pitfalls in multiple myeloma research.
    Potácová A; Stossová J; Buresová I; Kovárová L; Almási M; Penka M; Hájek R
    Klin Onkol; 2011; 24 Suppl():S18-23. PubMed ID: 21923059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tumor-initiating capacity of CD138- and CD138+ tumor cells in the 5T33 multiple myeloma model.
    Van Valckenborgh E; Matsui W; Agarwal P; Lub S; Dehui X; De Bruyne E; Menu E; Empsen C; van Grunsven L; Agarwal J; Wang Q; Jernberg-Wiklund H; Vanderkerken K
    Leukemia; 2012 Jun; 26(6):1436-9. PubMed ID: 22289925
    [No Abstract]   [Full Text] [Related]  

  • 59. [Effect of 2-methoxyestradiol on differentiation of primary myeloma cells].
    Gao WR; Hou J; Xiong H
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2006 Apr; 14(2):262-6. PubMed ID: 16638193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis.
    Andersen NF; Kristensen IB; Preiss BS; Christensen JH; Abildgaard N
    Eur J Haematol; 2015 Sep; 95(3):211-7. PubMed ID: 25353275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.