These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28375244)

  • 1. Deep reactive ion etched anti-reflection coatings for sub-millimeter silicon optics.
    Gallardo PA; Koopman BJ; Cothard NF; Bruno SM; Cortes-Medellin G; Marchetti G; Miller KH; Mockler B; Niemack MD; Stacey G; Wollack EJ
    Appl Opt; 2017 Apr; 56(10):2796-2803. PubMed ID: 28375244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths.
    Datta R; Munson CD; Niemack MD; McMahon JJ; Britton J; Wollack EJ; Beall J; Devlin MJ; Fowler J; Gallardo P; Hubmayr J; Irwin K; Newburgh L; Nibarger JP; Page L; Quijada MA; Schmitt BL; Staggs ST; Thornton R; Zhang L
    Appl Opt; 2013 Dec; 52(36):8747-58. PubMed ID: 24513939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1.6:1 bandwidth two-layer antireflection structure for silicon matched to the 190-310  GHz atmospheric window.
    Defrance F; Jung-Kubiak C; Sayers J; Connors J; deYoung C; Hollister MI; Yoshida H; Chattopadhyay G; Golwala SR; Radford SJE
    Appl Opt; 2018 Jun; 57(18):5196-5209. PubMed ID: 30117982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Black Silicon as Anti-Reflective Structure for Infrared Imaging Applications.
    Bardalen E; Bouchouri A; Akram MN; Nguyen HV
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Millimeter-wave antireflection coating for cryogenic silicon lenses.
    Lau J; Fowler J; Marriage T; Page L; Leong J; Wishnow E; Henry R; Wollack E; Halpern M; Marsden D; Marsden G
    Appl Opt; 2006 Jun; 45(16):3746-51. PubMed ID: 16724132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband plasma spray anti-reflection coating technology for millimeter-wave astrophysics.
    Jeong O; Plambeck R; Raum C; Suzuki A; Lee AT
    Appl Opt; 2023 Feb; 62(6):1628-1634. PubMed ID: 36821328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Through via Holes in Ultra-Thin Fused Silica Wafers for Microwave and Millimeter-Wave Applications.
    Li X; Chan KY; Ramer R
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband, millimeter-wave antireflection coatings for large-format, cryogenic aluminum oxide optics.
    Nadolski A; Vieira JD; Sobrin JA; Kofman AM; Ade PAR; Ahmed Z; Anderson AJ; Avva JS; Basu Thakur R; Bender AN; Benson BA; Bryant L; Carlstrom JE; Carter FW; Cecil TW; Chang CL; Cheshire JR; Chesmore GE; Cliche JF; Cukierman A; de Haan T; Dierickx M; Ding J; Dutcher D; Everett W; Farwick J; Ferguson KR; Florez L; Foster A; Fu J; Gallicchio J; Gambrel AE; Gardner RW; Groh JC; Guns S; Guyser R; Halverson NW; Harke-Hosemann AH; Harrington NL; Harris RJ; Henning JW; Holzapfel WL; Howe D; Huang N; Irwin KD; Jeong O; Jonas M; Jones A; Korman M; Kovac J; Kubik DL; Kuhlmann S; Kuo CL; Lee AT; Lowitz AE; McMahon J; Meier J; Meyer SS; Michalik D; Montgomery J; Natoli T; Nguyen H; Noble GI; Novosad V; Padin S; Pan Z; Paschos P; Pearson J; Posada CM; Quan W; Rahlin A; Riebel D; Ruhl JE; Sayre JT; Shirokoff E; Smecher G; Stark AA; Stephen J; Story KT; Suzuki A; Tandoi C; Thompson KL; Tucker C; Vanderlinde K; Wang G; Whitehorn N; Yefremenko V; Yoon KW; Young MR
    Appl Opt; 2020 Apr; 59(10):3285-3295. PubMed ID: 32400613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters.
    Inoue Y; Hamada T; Hasegawa M; Hazumi M; Hori Y; Suzuki A; Tomaru T; Matsumura T; Sakata T; Minamoto T; Hirai T
    Appl Opt; 2016 Dec; 55(34):D22-D28. PubMed ID: 27958435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxy-based broadband antireflection coating for millimeter-wave optics.
    Rosen D; Suzuki A; Keating B; Krantz W; Lee AT; Quealy E; Richards PL; Siritanasak P; Walker W
    Appl Opt; 2013 Nov; 52(33):8102-5. PubMed ID: 24513764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet antireflection coatings for use in silicon detector design.
    Hamden ET; Greer F; Hoenk ME; Blacksberg J; Dickie MR; Nikzad S; Martin DC; Schiminovich D
    Appl Opt; 2011 Jul; 50(21):4180-8. PubMed ID: 21772406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solgel derived tantalum pentoxide films as ultraviolet antireflective coatings for silicon.
    Rehg TJ; Ochoa-Tapia JA; Knoesen A; Higgins BG
    Appl Opt; 1989 Dec; 28(24):5215-21. PubMed ID: 20556030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical measurements of the silicon vacuum window with anti-reflective sub-wavelength structure for ASTE Band 10.
    Nagai M; Ezaki S; Sakai R; Kaneko K; Imada H; Kojima T; Shan W; Uzawa Y; Asayama S
    Appl Opt; 2023 Aug; 62(23):6287-6296. PubMed ID: 37707098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A silicon neural probe fabricated using DRIE on bonded thin silicon.
    Xiao Chuan Ong ; Willard A; Forssell M; Gittis A; Fedder GK
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4885-4888. PubMed ID: 28269365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties.
    Pedrueza E; Sancho-Parramon J; Bosch S; Valdés JL; Martinez-Pastor JP
    Nanotechnology; 2013 Feb; 24(6):065202. PubMed ID: 23339892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of microstructured silicon wafers as internal reflection elements in attenuated total reflection Fourier transform infrared spectroscopy.
    Schumacher H; Künzelmann U; Vasilev B; Eichhorn KJ; Bartha JW
    Appl Spectrosc; 2010 Sep; 64(9):1022-7. PubMed ID: 20828439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics.
    Hosako I
    Appl Opt; 2003 Jul; 42(19):4045-8. PubMed ID: 12868846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust terahertz polarizers with high transmittance at selected frequencies through Si wafer bonding technologies.
    Yu TY; Chi NC; Tsai HC; Wang SY; Luo CW; Chen KN
    Opt Lett; 2017 Dec; 42(23):4917-4920. PubMed ID: 29216144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching.
    Morton KJ; Nieberg G; Bai S; Chou SY
    Nanotechnology; 2008 Aug; 19(34):345301. PubMed ID: 21730643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-reflection coating with mullite and Duroid for large-diameter cryogenic sapphire and alumina optics.
    Sakaguri K; Hasegawa M; Sakurai Y; Sugiyama J; Farias N; Hill CA; Johnson BR; Konishi K; Kusaka A; Lee AT; Matsumura T; Wollack EJ; Yumoto J
    Appl Opt; 2024 Feb; 63(6):1618-1627. PubMed ID: 38437377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.